User menu

Estimating the out-of-sample predictive ability of trading rules: a robust bootstrap approach

Bibliographic reference Hambuckers, J. ; Heuchenne, Cédric. Estimating the out-of-sample predictive ability of trading rules: a robust bootstrap approach. In: Journal of Forecasting, Vol. 35, no. 4, p. 347-372 (2016)
Permanent URL
  1. Allen Franklin, Karjalainen Risto, Using genetic algorithms to find technical trading rules1Helpful comments were made by Adam Dunsby, Lawrence Fisher, Steven Kimbrough, Paul Kleindorfer, Michele Kreisler, James Laing, Josef Lakonishok, George Mailath, and seminar participants at Institutional Investor, J.P. Morgan, the NBER Asset Pricing Program, Ohio State University, Purdue University, the Santa Fe Institute, Rutgers University, Stanford University, University of California, Berkeley, University of Michigan, University of Pennsylvania, University of Utah, Washington University (St. Louis), and the 1995 AFA Meetings in Washington, D.C. We are particularly grateful to Kenneth R. French (the referee), and G. William Schwert (the editor) for their suggestions. Financial support from the National Science Foundation is gratefully acknowledged by the first author and from the Academy of Finland by the second and from the Geewax-Terker Program in Financial Instruments by both. Correspondence should be addressed to Franklin Allen, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6367.1, 10.1016/s0304-405x(98)00052-x
  2. Bai Xuezheng, Russell Jeffrey R., Tiao George C., Kurtosis of GARCH and stochastic volatility models with non-normal innovations, 10.1016/s0304-4076(03)00088-5
  3. Bajgrowicz Pierre, Scaillet Olivier, Technical trading revisited: False discoveries, persistence tests, and transaction costs, 10.1016/j.jfineco.2012.06.001
  4. Bali Turan G., Wu Liuren, A comprehensive analysis of the short-term interest-rate dynamics, 10.1016/j.jbankfin.2005.05.003
  5. BROCK WILLIAM, LAKONISHOK JOSEF, LeBARON BLAKE, Simple Technical Trading Rules and the Stochastic Properties of Stock Returns, 10.1111/j.1540-6261.1992.tb04681.x
  6. Cox John C., Ingersoll Jonathan E., Ross Stephen A., A Theory of the Term Structure of Interest Rates, 10.2307/1911242
  7. Davidson, Palgrave Handbook of Econometrics, 17 (2006)
  8. Diebold Francis X., Li Canlin, Forecasting the term structure of government bond yields, 10.1016/j.jeconom.2005.03.005
  9. Efron B., Bootstrap Methods: Another Look at the Jackknife, 10.1214/aos/1176344552
  10. Efron Bradley, Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation, 10.1080/01621459.1983.10477973
  11. Efron Bradley, Tibshirani Robert J., An Introduction to the Bootstrap, ISBN:9780412042317, 10.1007/978-1-4899-4541-9
  12. Efron, Journal of the American Statistical Association, 92, 548 (1997)
  13. Engle, Journal of Business and Economic Statistics, 9, 345 (1991)
  14. Falbo Paolo, Pelizzari Cristian, Stable classes of technical trading rules, 10.1080/09603100802676239
  15. Fang Jiali, Jacobsen Ben, Qin Yafeng, Predictability of the simple technical trading rules: An out-of-sample test, 10.1016/j.rfe.2013.05.004
  16. Hall Peter, Yao Qiwei, Inference in Arch and Garch Models with Heavy-Tailed Errors, 10.1111/1468-0262.00396
  17. Hansen Peter Reinhard, A Test for Superior Predictive Ability, 10.1198/073500105000000063
  18. Hsu Po-Hsuan, Hsu Yu-Chin, Kuan Chung-Ming, Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias, 10.1016/j.jempfin.2010.01.001
  19. Kho Bong-Chan, Time-varying risk premia, volatility, and technical trading rule profits: Evidence from foreign currency futures markets, 10.1016/0304-405x(95)00861-8
  20. Kreiss Jens-Peter, Paparoditis Efstathios, Bootstrap methods for dependent data: A review, 10.1016/j.jkss.2011.08.009
  21. Kuang P., Schröder M., Wang Q., Illusory profitability of technical analysis in emerging foreign exchange markets, 10.1016/j.ijforecast.2013.07.015
  22. Kunsch Hans R., The Jackknife and the Bootstrap for General Stationary Observations, 10.1214/aos/1176347265
  23. Lo Andrew W., MacKinlay A. Craig, Data-Snooping Biases in Tests of Financial Asset Pricing Models, 10.1093/rfs/3.3.431
  24. Lukac Louis P., Brorsen B. Wade, Irwin Scott H., A test of futures market disequilibrium using twelve different technical trading systems, 10.1080/00036848800000113
  25. Park Cheol-Ho, Irwin Scott H., WHAT DO WE KNOW ABOUT THE PROFITABILITY OF TECHNICAL ANALYSIS?, 10.1111/j.1467-6419.2007.00519.x
  26. Politis Dimitris N., Romano Joseph P., The Stationary Bootstrap, 10.1080/01621459.1994.10476870
  27. Politis Dimitris N., White Halbert, Automatic Block-Length Selection for the Dependent Bootstrap, 10.1081/etc-120028836
  28. Romano Joseph P., Wolf Michael, Stepwise Multiple Testing as Formalized Data Snooping, 10.1111/j.1468-0262.2005.00615.x
  29. Sarno Lucio, Thornton Daniel L., Valente Giorgio, Federal Funds Rate Prediction, 10.1353/mcb.2005.0035
  30. Sullivan Ryan, Timmermann Allan, White Halbert, Data-Snooping, Technical Trading Rule Performance, and the Bootstrap, 10.1111/0022-1082.00163
  31. Taylor Nick, The rise and fall of technical trading rule success, 10.1016/j.jbankfin.2013.12.004
  32. White Halbert, A Reality Check for Data Snooping, 10.1111/1468-0262.00152