User menu

Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus

Bibliographic reference Morin Duchesne, Alexi ; Saint-Aubin, Yvan. Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus. In: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 80, no.021130, p. 1-13 (2009)
Permanent URL http://hdl.handle.net/2078/170591
  1. Langlands Robert, Pouliot Philippe, Saint-Aubin Yvan, Conformal invariance in two-dimensional percolation, 10.1090/s0273-0979-1994-00456-2
  2. Pinson Haru T., Critical percolation on the torus, 10.1007/bf02186762
  3. Nienhuis Bernard, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, 10.1007/bf01009437
  4. B. Nienhuis, Coulomb Gas Formulation of Two-Dimensional Phase Transitions (1987)
  5. di Francesco P., Saleur H., Zuber J. B., Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models, 10.1007/bf01009954
  6. Arguin Louis-Pierre, 10.1023/a:1019979326380
  7. Ziff Robert M, Lorenz Christian D, Kleban Peter, Shape-dependent universality in percolation, 10.1016/s0378-4371(98)00569-x
  8. Newman M. E. J., Ziff R. M., Fast Monte Carlo algorithm for site or bond percolation, 10.1103/physreve.64.016706
  9. Feng Xiaomei, Deng Youjin, Blöte Henk W. J., Percolation transitions in two dimensions, 10.1103/physreve.78.031136
  10. Camia Federico, Newman Charles M., Critical percolation exploration path and SLE 6: a proof of convergence, 10.1007/s00440-006-0049-7
  11. W. Werner, Mathematical Statistical Physics, Session LXXXIII (2009)
  12. Werner Wendelin, The conformally invariant measure on self-avoiding loops, 10.1090/s0894-0347-07-00557-7
  13. Saleur H, Conformal invariance for polymers and percolation, 10.1088/0305-4470/20/2/031
  14. Saleur H., Duplantier B., Exact Determination of the Percolation Hull Exponent in Two Dimensions, 10.1103/physrevlett.58.2325
  15. Duplantier B., Saleur H., Exact fractal dimension of 2D Ising clusters, 10.1103/physrevlett.63.2536
  16. Fjelstad J., Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu., Logarithmic conformal field theories via logarithmic deformations, 10.1016/s0550-3213(02)00220-1
  17. Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Modular Group Representations and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group Center, 10.1007/s00220-006-1551-6
  18. Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Logarithmic extensions of minimal models: Characters and modular transformations, 10.1016/j.nuclphysb.2006.09.019
  19. Read N., Saleur H., Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions, 10.1016/s0550-3213(01)00395-9
  20. Read N., Saleur Hubert, Associative-algebraic approach to logarithmic conformal field theories, 10.1016/j.nuclphysb.2007.03.033
  21. Pearce Paul A, Rasmussen Jørgen, Zuber Jean-Bernard, Logarithmic minimal models, 10.1088/1742-5468/2006/11/p11017
  22. Rasmussen Jørgen, Pearce Paul A, {\cal W} -extended fusion algebra of critical percolation, 10.1088/1751-8113/41/29/295208
  23. Eberle Holger, Flohr Michael, Virasoro representations and fusion for general augmented minimal models, 10.1088/0305-4470/39/49/012
  24. Simmons Jacob J H, Kleban Peter, Ziff Robert M, Percolation crossing formulae and conformal field theory, 10.1088/1751-8113/40/31/f03
  25. Mathieu Pierre, Ridout David, From percolation to logarithmic conformal field theory, 10.1016/j.physletb.2007.10.007
  26. Mathieu Pierre, Ridout David, Logarithmic minimal models, their logarithmic couplings, and duality, 10.1016/j.nuclphysb.2008.02.017
  27. Arguin Louis-Pierre, Saint-Aubin Yvan, Non-unitary observables in the 2d critical Ising model, 10.1016/s0370-2693(02)02228-1
  28. Cardy J L, Critical percolation in finite geometries, 10.1088/0305-4470/25/4/009
  29. Di Francesco Philippe, Mathieu Pierre, Sénéchal David, Conformal Field Theory, ISBN:9781461274759, 10.1007/978-1-4612-2256-9
  30. Stanley H E, Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents, 10.1088/0305-4470/10/11/008
  31. B. Duplantier, Mathematical Statistical Physics, Session LXXXIII (2009)
  32. Saint-Aubin Yvan, Pearce Paul A, Rasmussen Jørgen, Geometric exponents, SLE and logarithmic minimal models, 10.1088/1742-5468/2009/02/p02028
  33. Cardy John, The number of incipient spanning clusters in two-dimensional percolation, 10.1088/0305-4470/31/5/003
  34. Ridout David, On the percolation BCFT and the crossing probability of Watts, 10.1016/j.nuclphysb.2008.09.038
  35. F. Diamond, A First Course in Modular Forms (2005)