User menu

Rhythmic arm movements are less affected than discrete ones after a stroke

Bibliographic reference Leconte, Patricia ; Orban de Xivry, Jean-Jacques ; Stoquart, Gaëtan ; Lejeune, Thierry ; Ronsse, Renaud. Rhythmic arm movements are less affected than discrete ones after a stroke. In: Experimental Brain Research, Vol. 234, no. 6, p. 1403-1417 (2016)
Permanent URL
  1. Andersen Richard A., Cui He, Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits, 10.1016/j.neuron.2009.08.028
  2. Balasubramanian S., Melendez-Calderon A., Burdet E., A Robust and Sensitive Metric for Quantifying Movement Smoothness, 10.1109/tbme.2011.2179545
  3. Barbeau Hugues, Visintin Martha, Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated., 10.1016/s0003-9993(03)00361-7
  4. Brown T. Graham, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, 10.1113/jphysiol.1914.sp001646
  5. Buchanan John J., Park Jin-Hoon, Shea Charles H., Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action, 10.1007/s00221-006-0589-1
  6. Cirstea M. C., Levin M. F., Compensatory strategies for reaching in stroke, 10.1093/brain/123.5.940
  7. Cohen AH, Rossignol S, Grillner S (1988) Neural control of rhythmic movements in vertebrates. Wiley, New York
  8. Collins J. J., Richmond S. A., Hard-wired central pattern generators for quadrupedal locomotion, 10.1007/bf00198915
  9. Dagnelie P (2013) Statistique théorique et appliquée, 1st edn. De Boeck, Bruxelles
  10. de Rugy Aymar, Sternad Dagmar, Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements, 10.1016/j.brainres.2003.09.031
  11. Grafton S. T., Desmurget M., Epstein C. M., Turner R. S., Prablanc C., Alexander G. E., 10.1038/9219
  12. Desmurget M, Gréa H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2928
  13. Dietz Volker, Proprioception and locomotor disorders, 10.1038/nrn939
  14. DIMITRIJEVIC MILAN R., GERASIMENKO YURI, PINTER MICHAELA M., Evidence for a Spinal Central Pattern Generator in Humansa, 10.1111/j.1749-6632.1998.tb09062.x
  15. Dipietro Laura, Krebs Hermano I., Fasoli Susan E., Volpe Bruce T., Hogan Neville, Submovement changes characterize generalization of motor recovery after stroke, 10.1016/j.cortex.2008.02.008
  16. Diserens K., Perret N., Chatelain S., Bashir S., Ruegg D., Vuadens P., Vingerhoets F., The effect of repetitive arm cycling on post stroke spasticity and motor control, 10.1016/j.jns.2006.10.021
  17. Duysens Jacques, Van de Crommert Henry W.A.A, Neural control of locomotion; Part 1: The central pattern generator from cats to humans, 10.1016/s0966-6362(97)00042-8
  18. Fitts Paul M., The information capacity of the human motor system in controlling the amplitude of movement., 10.1037/h0055392
  19. Fugl-Meyer A, Jääskö L, Leyman I, Olsson S, Steglind S (1974) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31
  20. Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Stoquart G, A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: A preliminary prospective cohort study, 10.2340/16501977-0926
  21. Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Selves C, Stoquart G, Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients, 10.2340/16501977-1245
  22. Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune TM, Stoquart G (2014b) Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabil Neural Repair. doi: 10.1177/1545968314541172
  23. Giszter Simon F, Motor primitives—new data and future questions, 10.1016/j.conb.2015.04.004
  24. Glover Scott, Wall Matthew B., Smith Andrew T., Distinct cortical networks support the planning and online control of reaching-to-grasp in humans : Cortical planning and control, 10.1111/j.1460-9568.2012.08018.x
  25. Goto Yumeno, Jono Yasutomo, Hatanaka Ryota, Nomura Yoshifumi, Tani Keisuke, Chujo Yuta, Hiraoka Koichi, Different corticospinal control between discrete and rhythmic movement of the ankle, 10.3389/fnhum.2014.00578
  26. Gowland Carolyn, deBruin Hubert, Basmajian John V, Plews Nancy, Burcea Ion, Agonist and Antagonist Activity During Voluntary Upper-Limb Movement in Patients with Stroke, 10.1093/ptj/72.9.624
  27. Guiard Yves, On Fitts's and Hooke's laws: Simple harmonic movement in upper-limb cyclical aiming, 10.1016/0001-6918(93)90009-g
  28. Haiss F., Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex, 10.1523/jneurosci.3760-04.2005
  29. Hanakawa T., Dimyan M. A., Hallett M., Motor Planning, Imagery, and Execution in the Distributed Motor Network: A Time-Course Study with Functional MRI, 10.1093/cercor/bhn036
  30. Hogan Neville, Sternad Dagmar, On rhythmic and discrete movements: reflections, definitions and implications for motor control, 10.1007/s00221-007-0899-y
  31. Hogan Neville, Sternad Dagmar, Sensitivity of Smoothness Measures to Movement Duration, Amplitude, and Arrests, 10.3200/35-09-004-rc
  32. Hogan Neville, Sternad Dagmar, Dynamic primitives of motor behavior, 10.1007/s00422-012-0527-1
  33. Hogan Neville, Sternad Dagmar, Dynamic primitives in the control of locomotion, 10.3389/fncom.2013.00071
  34. Howard I. S., Ingram J. N., Wolpert D. M., Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning, 10.1152/jn.00780.2010
  35. Ijspeert Auke Jan, Central pattern generators for locomotion control in animals and robots: A review, 10.1016/j.neunet.2008.03.014
  36. Ikegami T., Hirashima M., Taga G., Nozaki D., Asymmetric Transfer of Visuomotor Learning between Discrete and Rhythmic Movements, 10.1523/jneurosci.3066-09.2010
  37. Kamper Derek G., McKenna-Cole Alicia N., Kahn Leonard E., Reinkensmeyer David J., Alterations in reaching after stroke and their relation to movement direction and impairment severity, 10.1053/apmr.2002.32446
  38. Kawashima N., Alternate Leg Movement Amplifies Locomotor-Like Muscle Activity in Spinal Cord Injured Persons, 10.1152/jn.00817.2004
  39. Krebs HI, Hogan N, Volpe BT, Aisen ML, Diels C (1999) Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care 7:419–423
  40. Langhorne Peter, Bernhardt Julie, Kwakkel Gert, Stroke rehabilitation, 10.1016/s0140-6736(11)60325-5
  41. Levy-Tzedek S., Krebs Hermano Igo, Song D., Hogan N., Poizner H., Non-monotonicity on a spatio-temporally defined cyclic task: evidence of two movement types?, 10.1007/s00221-010-2176-8
  42. Levy-Tzedek S., Krebs H. I., Arle J. E., Shils J. L., Poizner H., Rhythmic movement in Parkinson’s disease: effects of visual feedback and medication state, 10.1007/s00221-011-2685-0
  43. Luft Andreas R., McCombe-Waller Sandy, Whitall Jill, Forrester Larry W., Macko Richard, Sorkin John D., Schulz Jörg B., Goldberg Andrew P., Hanley Daniel F., Repetitive Bilateral Arm Training and Motor Cortex Activation in Chronic Stroke : A Randomized Controlled Trial, 10.1001/jama.292.15.1853
  44. Marder Eve, Bucher Dirk, Central pattern generators and the control of rhythmic movements, 10.1016/s0960-9822(01)00581-4
  45. Mazzoni P., Hristova A., Krakauer J. W., Why Don't We Move Faster? Parkinson's Disease, Movement Vigor, and Implicit Motivation, 10.1523/jneurosci.0264-07.2007
  46. Nozaki Daichi, Kurtzer Isaac, Scott Stephen H, Limited transfer of learning between unimanual and bimanual skills within the same limb, 10.1038/nn1785
  47. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N (2002) Movement smoothness changes during stroke recovery. J Neurosci 22:8297–8304
  48. Ronsse Renaud, Sternad Dagmar, Lefèvre Philippe, A Computational Model for Rhythmic and Discrete Movements in Uni- and Bimanual Coordination, 10.1162/neco.2008.03-08-720
  49. Ronsse Renaud, Puttemans Veerle, Coxon James P., Goble Daniel J., Wagemans Johan, Wenderoth Nicole, Swinnen Stephan P., Motor Learning with Augmented Feedback: Modality-Dependent Behavioral and Neural Consequences, 10.1093/cercor/bhq209
  50. Schaal S, Kotosaka S, Sternad D (2000) Nonlinear dynamical systems as movement primitives. In: IEEE international conference on humanoid robotics, pp 1–11. . Accessed 17 Feb 2015
  51. Schaal Stefan, Sternad Dagmar, Osu Rieko, Kawato Mitsuo, Rhythmic arm movement is not discrete, 10.1038/nn1322
  52. Shadmehr Reza, Krakauer John W., A computational neuroanatomy for motor control, 10.1007/s00221-008-1280-5
  53. Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666
  54. Simkins Matt, Burleigh Jacobs Anne, Rosen Jacob, Rhythmic affects on stroke-induced joint synergies across a range of speeds, 10.1007/s00221-013-3613-2
  55. Smits-Engelsman B.C.M., Swinnen S.P., Duysens J., The advantage of cyclic over discrete movements remains evident following changes in load and amplitude, 10.1016/j.neulet.2005.11.001
  56. Spencer R. M. C., Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions, 10.1126/science.1083661
  57. Spencer Rebecca M. C., Ivry Richard B., Zelaznik Howard N., Role of the cerebellum in movements: control of timing or movement transitions?, 10.1007/s00221-004-2088-6
  58. Sternad Dagmar, Dean William J., Rhythmic and discrete elements in multi-joint coordination, 10.1016/s0006-8993(03)03292-x
  59. Sternad Dagmar, Dean William J., Schaal Stefan, Interaction of rhythmic and discrete pattern generators in single-joint movements, 10.1016/s0167-9457(00)00028-2
  60. Sternad Dagmar, Marino Hamal, Charles Steven K., Duarte Marcos, Dipietro Laura, Hogan Neville, Transitions between discrete and rhythmic primitives in a unimanual task, 10.3389/fncom.2013.00090
  62. van Mourik Anke M., Beek Peter J., Discrete and cyclical movements: unified dynamics or separate control?, 10.1016/j.actpsy.2004.06.001
  63. Whitall J., Waller S. M., Silver K. H. C., Macko R. F., Repetitive Bilateral Arm Training With Rhythmic Auditory Cueing Improves Motor Function in Chronic Hemiparetic Stroke, 10.1161/01.str.31.10.2390
  64. White O., Bleyenheuft Y., Ronsse R., Smith A. M., Thonnard J.-L., Lefevre P., Altered Gravity Highlights Central Pattern Generator Mechanisms, 10.1152/jn.90436.2008
  65. Zehr E. Paul, Duysens Jacques, Regulation of Arm and Leg Movement during Human Locomotion, 10.1177/1073858404264680
  66. Zehr E Paul, Carroll Timothy J, Chua Romeo, Collins David F, Frigon Alain, Haridas Carlos, Hundza Sandra R, Thompson Aiko Kido, Possible contributions of CPG activity to the control of rhythmic human arm movement, 10.1139/y04-056
  67. Zehr E. P., Loadman P. M., Hundza S. R., Neural control of rhythmic arm cycling after stroke, 10.1152/jn.01152.2011
  68. Zondervan DK, Smith B, Reinkensmeyer DJ (2013) Lever-actuated resonance assistance (LARA): a wheelchair-based method for upper extremity therapy and overground ambulation for people with severe arm impairment. In: Rehabilitation robotics (ICORR), International conference on IEEE, pp 1–6. . Accessed 7 Oct 2014b
  69. Zondervan Daniel K, Palafox Lorena, Hernandez Jorge, Reinkensmeyer David J, The Resonating Arm Exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance, 10.1186/1743-0003-10-39