User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting : a penalized log-likelihood approach

  1. Brouhns N, Insurance: Mathematics & Economics, 31, 373 (2002)
  2. Brouhns N, Bulletin of the Swiss Association of Actuaries, 105 (2002)
  3. Czado C, Insurance: Mathematics & Economics, 36, 260 (2005)
  4. Currie Iain D, Durban Maria, Eilers Paul HC, Smoothing and forecasting mortality rates, 10.1191/1471082x04st080oa
  5. Eilers Paul H. C., Marx Brian D., Flexible smoothing with B -splines and penalties, 10.1214/ss/1038425655
  6. Girosi F and King G (in press) Demographic forecasting. (monograph available from http://GKing.Harvard.edu)
  7. Henderson R, Transactions of the Society of Actuaries, 17, 43 (1916)
  8. Henderson R, Transactions of the Society of Actuaries, 25, 29 (1924)
  9. Hyndman RJ, Computational Statistics and Data Analysis
  10. Lee Ronald, The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications, 10.1080/10920277.2000.10595882
  11. Lee RD, Journal of the American Statistical Association, 87, 659 (1992)
  12. Loader C, Local regression and likelihood (1999)
  13. Renshaw AE, Insurance: Mathematics & Economics, 33, 255 (2003)
  14. Renshaw A, Applied Statistics, 52, 119 (2003)
  15. Renshaw AE, Insurance: Mathematics & Economics, 32, 379 (2003)
  16. Seal H, German Actuarial Bulletin, 15, 89 (1981)
  17. Sithole TZ, Insurance: Mathematics & Economics, 27, 285 (2000)
  18. Sheppard WF, Journal of the Institute of Actuaries, 48, 171 (1914)
  19. Sheppard WF, Journal of the Institute of Actuaries, 48, 390 (1914)
  20. Spencer J, Journal of the Institute of Actuaries, 38, 334 (1904)
  21. Whittaker ET, Proceedings of the Edinburgh Mathematical Society, 41, 63 (1923)
  22. Wilmoth JR, Technical Report (1993)
Bibliographic reference Delwarde, Antoine ; Eilers, P.H.C. ; Denuit, Michel. Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting : a penalized log-likelihood approach. In: Statistical Modelling, Vol. 7, p. 29-48 (2007)
Permanent URL http://hdl.handle.net/2078/16938