User menu

Moment bounds on discrete expected stop-loss transforms, with applications

Bibliographic reference Courtois, Cindy ; Denuit, Michel. Moment bounds on discrete expected stop-loss transforms, with applications. In: Methodology and Computing in Applied Probability, Vol. 11, p. 307-338 (2007)
Permanent URL http://hdl.handle.net/2078/16909
  1. N. Brouhns, M. Denuit, and J. K. Vermunt, “A Poisson log-bilinear regression approach to the construction of projected lifetables,” Insurance: Mathematics and Economics vol. 31 pp. 373–393, 2002.
  2. C. Courtois, M. Denuit, and S. Van Bellegem, “Discrete s-convex extremal distributions: Theory and applications,” Applied Mathematics Letters vol. 19 pp. 1367–1377, 2006.
  3. M. Denuit, and J. Dhaene, “Comonotonic bounds on the survival probabilities in the Lee–Carter model for mortality projection,” Journal of Computational and Applied Mathematics vol. 203 pp. 169–176, 2006.
  4. M. Denuit, and C. Lefèvre, “Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences,” Insurance: Mathematics and Economics vol. 20 pp. 197–214, 1997.
  5. M. Denuit, F. E. De Vijlder, and C. Lefèvre, “Extremal generators and extremal distributions for the continuous s-convex stochastic orderings,” Insurance: Mathematics and Economics vol. 24 pp. 201–217, 1999a.
  6. M. Denuit, C. Lefèvre, and M. Mesfioui, “On s-convex stochastic extrema for arithmetic risks,” Insurance: Mathematics and Economics vol. 25 pp. 143–155, 1999b.
  7. F. E. De Vijlder, Advanced Risk Theory. A Self-Contained Introduction. Editions de l’Université Libre de Bruxelles, Swiss Association of Actuaries: Bruxelles, 1996.
  8. H. U. Gerber, “Mathematical fun with the compound binomial process,” ASTIN Bulletin vol. 18 pp. 161–168, 1988.
  9. W. Hürlimann, “Analytical bounds for two value-at-risk functionals,” ASTIN Bulletin vol. 32 pp. 235–265, 2002.
  10. W. Hürlimann, “Conditional value-at-risk bounds for compound Poisson risks and a normal approximation,” Journal of Applied Mathematics vol. 3 pp. 141–154, 2003.
  11. W. Hürlimann, “Improved analytical bounds for gambler’s ruin probability,” Methodology and Computing in Applied Probability vol. 7 pp. 79–95, 2005.
  12. K. Jansen, J., Haezendonck, and M. J. Goovaerts, “Upper bounds on stop-loss premiums in case of known moments up to the fourth order,” Insurance: Mathematics and Economics vol. 5 pp. 315–334, 1986.
  13. E. S. W. Shiu, “The probability of eventual ruin in the compound binomial process,” ASTIN Bulletin vol. 19 pp. 179–190, 1989.