User menu

Tacnode GUE-minor processes and double Aztec Diamonds

Bibliographic reference Adler, Mark ; Chhita, Sunil ; Johansson, Kurt ; Van Moerbeke, Pierre. Tacnode GUE-minor processes and double Aztec Diamonds. In: Probability Theory and Related Fields, Vol. 162, no. 1-2, p. 275-325 (2015)
Permanent URL
  1. Adler Mark, Ferrari Patrik L., van Moerbeke Pierre, Nonintersecting random walks in the neighborhood of a symmetric tacnode, 10.1214/11-aop726
  2. Adler Mark, Johansson Kurt, van Moerbeke Pierre, Double Aztec diamonds and the tacnode process, 10.1016/j.aim.2013.10.012
  3. Adler, M., van Moerbeke, P.: Coupled GUE-minor processes. arXiv:1312.3859 (2013)
  4. Borodin Alexei, Ferrari Patrik L., Anisotropic Growth of Random Surfaces in 2 + 1 Dimensions, 10.1007/s00220-013-1823-x
  5. Chhita, S., Johansson, K., Young, B.: Asymptotic domino statistics in the Aztec diamond. arXiv:1212.5414 (2012)
  6. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (electronic) (2001)
  7. Delvaux, S.: The tacnode kernel: equality of Riemann-Hilbert and Airy resolvent formulas. arXiv:1211.4845 (2012)
  8. Elkies Noam, Kuperberg Greg, Larsen Michael, Propp James, 10.1023/a:1022420103267
  9. Elkies Noam, Kuperberg Greg, Larsen Michael, Propp James, 10.1023/a:1022483817303
  10. Ferrari Patrik L., Spohn Herbert, 10.1023/a:1025703819894
  11. Ferrari Patrik, Vető Bálint, Non-colliding Brownian bridges and the asymmetric tacnode process, 10.1214/ejp.v17-1811
  12. Helfgott, H.: Edge effects on local statistcs in lattice dimers: a study of the Aztec diamond (finite case). arXiv:0007:7136 (2000)
  13. Jockusch, W., Propp, J., Shor, P.: Random domino tilings and the Arctic Circle Theorem. (1998)
  14. Johansson Kurt, Non-intersecting paths, random tilings and random matrices, 10.1007/s004400100187
  15. Johansson Kurt, The arctic circle boundary and the Airy process, 10.1214/009117904000000937
  16. Johansson Kurt, Non-colliding Brownian Motions and the Extended Tacnode Process, 10.1007/s00220-012-1600-2
  17. Johansson Kurt, Nordenstam Eric, Eigenvalues of GUE Minors, 10.1214/ejp.v11-370
  18. Kasteleyn P.W., The statistics of dimers on a lattice, 10.1016/0031-8914(61)90063-5
  19. Kenyon R, Local statistics of lattice dimers, 10.1016/s0246-0203(97)80106-9
  20. Luby Michael, Randall Dana, Sinclair Alistair, Markov Chain Algorithms for Planar Lattice Structures, 10.1137/s0097539799360355
  21. Okounkov, A., Reshetikhin N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (electronic) (2003)
  22. Propp James, Generalized domino-shuffling, 10.1016/s0304-3975(02)00815-0
  23. Romik Dan, Arctic circles, domino tilings and square Young tableaux, 10.1214/10-aop628