User menu

Biological inflammatory markers mediate the effect of preoperative pain-related behaviours on postoperative analgesics requirements

Bibliographic reference Daoudia, Myriam ; Decruynaere, Céline ; Le Polain de Waroux, Bernard ; Thonnard, Jean-Louis ; Plaghki, Léon ; et. al. Biological inflammatory markers mediate the effect of preoperative pain-related behaviours on postoperative analgesics requirements. In: BMC Anesthesiology, Vol. 15, p. 183 [1-8] (2015)
Permanent URL
  1. Kalkman J C., Visser K, Moen J, Bonsel J G., Grobbee E D., Moons M K.G., Preoperative prediction of severe postoperative pain : , 10.1016/s0304-3959(03)00252-5
  2. Janssen Kristel J. M., Kalkman Cor J., Grobbee Diederick E., Bonsel Gouke J., Moons Karel G. M., Vergouwe Yvonne, The Risk of Severe Postoperative Pain: Modification and Validation of a Clinical Prediction Rule : , 10.1213/ane.0b013e31818227da
  3. Yang J. C., Clark W. C., Tsui S. L., Ng K. F., Clark S. Bennett, Preoperative Multidimensional Affect and Pain Survey (MAPS) Scores Predict Postcolectomy Analgesia Requirement : , 10.1097/00002508-200012000-00007
  4. Andrich David, A rating formulation for ordered response categories, 10.1007/bf02293814
  5. Azab Basem, Zaher Medhat, Weiserbs Kera F., Torbey Estelle, Lacossiere Kenson, Gaddam Sainath, Gobunsuy Romel, Jadonath Sunil, Baldari Duccio, McCord Donald, Lafferty James, Usefulness of Neutrophil to Lymphocyte Ratio in Predicting Short- and Long-Term Mortality After Non–ST-Elevation Myocardial Infarction, 10.1016/j.amjcard.2010.03.062
  6. Azab Basem, Chainani Vinod, Shah Neeraj, McGinn Joseph T., Neutrophil–Lymphocyte Ratio as a Predictor of Major Adverse Cardiac Events Among Diabetic Population : A 4-Year Follow-Up Study, 10.1177/0003319712455216
  7. Forget Patrice, Machiels Jean-Pascal, Coulie Pierre G., Berliere Martine, Poncelet Alain J., Tombal Bertrand, Stainier Annabelle, Legrand Catherine, Canon Jean-Luc, Kremer Yann, De Kock Marc, Neutrophil:Lymphocyte Ratio and Intraoperative Use of Ketorolac or Diclofenac are Prognostic Factors in Different Cohorts of Patients Undergoing Breast, Lung, and Kidney Cancer Surgery, 10.1245/s10434-013-3136-x
  8. Gibson Patrick H., Croal Bernard L., Cuthbertson Brian H., Small Gary R., Ifezulike Adaeze I., Gibson George, Jeffrey Robert R., Buchan Keith G., El-Shafei Hussein, Hillis Graham S., Preoperative neutrophil-lymphocyte ratio and outcome from coronary artery bypass grafting, 10.1016/j.ahj.2007.06.043
  9. Proctor Michael J., Morrison David S., Talwar Dinesh, Balmer Steven M., Fletcher Colin D., O’Reilly Denis St.J., Foulis Alan K., Horgan Paul G., McMillan Donald C., A comparison of inflammation-based prognostic scores in patients with cancer. A Glasgow Inflammation Outcome Study, 10.1016/j.ejca.2011.03.028
  10. Jensen MP, Karoly P. Self-report scales and procedures for assessing pain in adults. In: Turk DC, Melzack R, editors. Handbook of pain assessment. New York: The Guilford Press; 1992. p. 135–52.
  11. Fine Perry G., Portenoy Russell K., Establishing “Best Practices” for Opioid Rotation: Conclusions of an Expert Panel, 10.1016/j.jpainsymman.2009.06.002
  12. Knotkova Helena, Fine Perry G., Portenoy Russell K., Opioid Rotation: The Science and the Limitations of the Equianalgesic Dose Table, 10.1016/j.jpainsymman.2009.06.001
  13. Shaheen Philip E., Walsh Declan, Lasheen Wael, Davis Mellar P., Lagman Ruth L., Opioid Equianalgesic Tables: Are They All Equally Dangerous?, 10.1016/j.jpainsymman.2009.06.004
  14. Guilford J. P., System in the Relationship of Affective Value to Frequency and Intensity of Auditory Stimuli, 10.2307/1418492
  15. Decruynaere C. The measure of pain by self-report: use of Rasch analysis. Université catholique de Louvain, 2007; < >
  16. Zigmond A. S., Snaith R. P., The Hospital Anxiety and Depression Scale, 10.1111/j.1600-0447.1983.tb09716.x
  17. Ravazi D, Delvaux N, Farvacques C, Robaye E. Validation of the French version of the Hospital Anxiety and Depression Scale (HADS) in a population of hospitalized cancer patients. Rev Psychol Appl. 1989;39:295–307.
  18. Neter J, Wasserman W, Kutner MH. Applied Linear Statistical Models. 3rd ed. Boston: Irwin; 1990. p. 408–11.
  19. DeMaris Alfred, Regression with Social Data : Modeling Continuous and Limited Response Variables, ISBN:9780471677567, 10.1002/0471677566
  20. Preacher Kristopher J., Hayes Andrew F., Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models, 10.3758/brm.40.3.879
  21. Muthén LK, Muthén BO. Mplus User’s Guide. 5th ed. Los Angeles, CA: Muthén & Muthén; 1998.
  22. MacKinnon DP. Introduction to statistical mediation analysis. New-York: Taylor & Francis Group, LLC; 2008.
  23. Werner Mads U., Mjöbo Helena N., Nielsen Per R., Rudin Åsa, Prediction of Postoperative Pain : A Systematic Review of Predictive Experimental Pain Studies, 10.1097/aln.0b013e3181dcd5a0
  24. Thornton Lisa M., Andersen Barbara L., Schuler Tammy A., Carson William E., A Psychological Intervention Reduces Inflammatory Markers by Alleviating Depressive Symptoms: Secondary Analysis of a Randomized Controlled Trial : , 10.1097/psy.0b013e3181b0545c
  25. Manyande A, Chayen S, Priyakumar P, Smith C C, Hayes M, Higgins D, Kee S, Phillips S, Salmon P, Anxiety and endocrine responses to surgery: paradoxical effects of preoperative relaxation training. : , 10.1097/00006842-199205000-00004
  26. Rosenberger Patricia H, Ickovics Jeannette R, Epel Elissa, Nadler Eric, Jokl Peter, Fulkerson John P, Tillie Jean M, Dhabhar Firdaus S, Surgical Stress-Induced Immune Cell Redistribution Profiles Predict Short-Term and Long-Term Postsurgical Recovery : A Prospective Study, 10.2106/jbjs.h.00989