User menu

A sufficient condition for the boundedness of matrix products accepted by an automaton

Bibliographic reference Philippe, Matthew ; Jungers, Raphaël M.. A sufficient condition for the boundedness of matrix products accepted by an automaton.HSCC 2015 (Seattle, WA, April 2015). In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, 2015
Permanent URL
  1. Y. Wang. Stability of linear autonomous systems under regular switching sequences. 2014.
  2. Volkov Mikhail V., Synchronizing Automata and the Černý Conjecture, Language and Automata Theory and Applications ISBN:9783540882817 p.11-27, 10.1007/978-3-540-88282-4_4
  3. Shorten Robert, Wirth Fabian, Mason Oliver, Wulff Kai, King Christopher, Stability Criteria for Switched and Hybrid Systems, 10.1137/05063516x
  4. Shorten R., Wirth F., Leith D., A positive systems model of TCP-like congestion control: asymptotic results, 10.1109/tnet.2006.876178
  5. G.-C. Rota and W. Strang. A note on the joint spectral radius.Nederlandse Koninklÿ ke Akademie & van Wetenschappen Indagationes Mathematicae, 22, 379--381, 1960.
  6. V. Y. Protasov and R. M. Jungers. Resonance and marginal instability of switching systems.arXiv preprint arXiv:1411.0497, 2014.
  7. Lin Hai, Antsaklis Panos J., Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, 10.1109/tac.2008.2012009
  8. Liberzon D., Morse A.S., Basic problems in stability and design of switched systems, 10.1109/37.793443
  9. Lee Ji-Woong, Dullerud Geir E., Uniform stabilization of discrete-time switched and Markovian jump linear systems, 10.1016/j.automatica.2005.08.019
  10. A. Kundu and D. Chatterjee. Stabilizing switching signals for switched linear systems.arXiv preprint arXiv:1303.1292, 2013.
  11. Kozyakin Victor, The Berger–Wang formula for the Markovian joint spectral radius, 10.1016/j.laa.2014.01.022
  12. R. M. Jungers, A. D'Innocenzo, and M. D. Di Benedetto. Feedback stabilization of dynamical systems with switched delays.arXiv preprint arXiv:1207.5119, 2012.
  13. R. Jungers. The joint spectral radius.Lecture Notes in Control and Information Sciences, 385, 2009.
  14. E. A. Hernandez-Vargas, R. H. Middleton, and P. Colaneri. Optimal and mpc switching strategies for mitigating viral mutation and escape. InPreprints of the 18th IFAC World Congress Milano (Italy) August, 2011.
  15. Essick Ray, Lee Ji-Woong, Dullerud Geir E., Control of Linear Switched Systems With Receding Horizon Modal Information, 10.1109/tac.2014.2321251
  16. Dai Xiongping, A Gel’fand-type spectral radius formula and stability of linear constrained switching systems, 10.1016/j.laa.2011.07.029
  17. J. Daafouz and J. Bernussou. Parameter dependent lyapunov functions for discrete time systems with time varying parametric uncertainties.Systems & control letters, 43(5): 355--359, 2001.
  18. Chitour Yacine, Mason Paolo, Sigalotti Mario, On the marginal instability of linear switched systems, 10.1016/j.sysconle.2012.04.005
  19. Berger Marc A., Wang Yang, Bounded semigroups of matrices, 10.1016/0024-3795(92)90267-e
  20. Arapura Donu, Peterson Chris, The common invariant subspace problem: an approach via Gröbner bases, 10.1016/j.laa.2003.03.001
  21. Alur Rajeev, D'Innocenzo Alessandro, Johansson Karl H., Pappas George J., Weiss Gera, Compositional Modeling and Analysis of Multi-Hop Control Networks, 10.1109/tac.2011.2163873
  22. Ahmadi Amir Ali, Jungers Raphaël M., Parrilo Pablo A., Roozbehani Mardavij, Joint Spectral Radius and Path-Complete Graph Lyapunov Functions, 10.1137/110855272