User menu

Inference in dynamic systems using B-splines and quasilinearized ODE penalties

Bibliographic reference Frasso, Gianluca ; Jaeger, Jonathan ; Lambert, Philippe. Inference in dynamic systems using B-splines and quasilinearized ODE penalties. In: Biometrical Journal : journal of mathematical methods in biosciences, Vol. 58, no. 3, p. 691-714 (2016)
Permanent URL
  1. Bellman, Quasilinearization and Nonlinear Boundary-value Problems (1965)
  2. Biegler L. T., Damiano J. J., Blau G. E., Nonlinear parameter estimation: A case study comparison, 10.1002/aic.690320105
  3. Currie Iain D, Smoothing constrained generalized linear models with an application to the Lee-Carter model, 10.1177/1471082x12471373
  4. Dierckx, Curve and Surface Fitting with Splines (1995)
  5. dos Santos Angela M., Lopes Sergio R., Viana R.L.Ricardo L., Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat, 10.1016/j.physa.2004.02.058
  6. Eilers Paul H. C., Marx Brian D., Flexible smoothing with B -splines and penalties, 10.1214/ss/1038425655
  7. Eilers Paul H. C., Marx Brian D., Splines, knots, and penalties, 10.1002/wics.125
  8. Elton Charles, Nicholson Mary, The Ten-Year Cycle in Numbers of the Lynx in Canada, 10.2307/1358
  9. Formaggia, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System (2010)
  10. Frasso, AStA Advances in Statistical Analysis, 1 (2015)
  11. Golub, Scientific Computing and Differential Equations (1992)
  12. Hastie, Generalized Additive Models (1990)
  13. Holling C. S., The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly, 10.4039/ent91293-5
  14. Hotelling Harold, Differential Equations Subject to Error, and Population Estimates, 10.1080/01621459.1927.10502963
  15. Jaeger Jonathan, Lambert Philippe, Bayesian P-spline estimation in hierarchical models specified by systems of affine differential equations, 10.1177/1471082x12471371
  16. MacLulich, Fluctuations in the Numbers of Varying hare (Lepus americanus) (1937)
  17. Ramsay J. O., Hooker G., Campbell D., Cao J., Parameter estimation for differential equations: a generalized smoothing approach : Parameter Estimation for Differential Equations, 10.1111/j.1467-9868.2007.00610.x
  18. Rodriguez-Fernandez Maria, Egea Jose A, Banga Julio R, 10.1186/1471-2105-7-483
  19. SCHALL ROBERT, Estimation in generalized linear models with random effects, 10.1093/biomet/78.4.719
  20. van der Pol Balth., LXXXVIII.On “relaxation-oscillations”, 10.1080/14786442608564127
  21. van der Pol Balth., van der Mark J., LXXII.The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, 10.1080/14786441108564652
  22. Wahba, Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics (1990)
  23. Wu Hulin, Zhu Haihong, Miao Hongyu, Perelson Alan S., Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models, 10.1007/s11538-007-9279-9
  24. Xue Hongqi, Miao Hongyu, Wu Hulin, Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error, 10.1214/09-aos784
  25. Zhang Z, Tao Y, Li Z, Factors affecting hare–lynx dynamics in the classic time series of the Hudson Bay Company, Canada, 10.3354/cr034083