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Abstract

We study the formation of bilateral agreements among farsighted agents in which their

payoffs increase in their own number of partners and decrease in their rivals’ number of

partners. When more cooperation among equals is profitable, and when the payoff of agents

in a small clique increases in the size of the clique, we show existence of and characterize a

singleton von-Neumann-Morgenstern farsighted stable set. The set contains either two-clique

networks, or dominant group networks in which only connected agents are active competitors.

Network formation may thus endogenously create a barrier to entry. If the sum of payoffs

increases when the connections are more unequally distributed among rivals, the efficient

networks are either nested split graphs when there are no barriers to entry, or may also have

a core-periphery structure when barriers to entry exist. The farsighted networks between

rivals we characterize are not efficient. We show that standard economic models of network

formation among competitors belong to our generalized framework.

JEL classification: C70, D20, D40.

Keywords: Network formation, Competition, Rivalry, Farsightedness, Efficiency.

∗Gilles Grandjean and Wouter Vergote acknowledge financial support from the FNRS. We are indebted to
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1 Introduction

Examples of cooperation between rivals are abundant. Firms which are competitors on a final

market jointly invest in R&D to share its costs and benefits, they also share customer databases

or engage in cross-licensing agreements. Countries sign bilateral trade agreements, colleagues

competing for a promotion work in teams, etc. In this paper, we propose a general class of games

to analyze these environments. In a game of network formation among rivals, ex ante symmetric

agents first engage in bilateral cooperation and then compete. Agents’ payoffs increase in their

own number of partners (degree monotonicity) and decrease in their rivals’ number of partners

(negative externalities).1 In this setup, we analyze networks formed by farsighted agents and

contrast these to efficient networks, i.e. those leading to the highest sum of payoffs.

Farsighted agents forecast how other agents may react to their choice of partners, and make a

decision by comparing the current network to the end network which is formed when other agents

have further deviated. Farsightedness in network formation has received increasing attention

over the past few years.2 In his survey on network formation, Jackson (2005) has stated that:

”...in large networks it might be that players have very little ability to forecast how the

network might change in reaction to the addition or deletion of a link. In such situations the

myopic solutions are quite reasonable. However, if players have very good information about

how others might react to changes in the network, then these are things that one wants to allow

for either in the specification of the game or in the definition of the stability concept”.

We believe that farsightedness is an appropriate assumption when studying cooperation

between competitors, as the number of competitors is usually rather small and the stakes are

high. Rivals then have the opportunity and the incentives to foresee how others might react to

changes in the network. We capture this through the notion of indirect dominance (Harsanyi

1974). A final network indirectly dominates an initial network if there exists a sequence of

networks that implements the final network from the initial network such that at any step of

the sequence all agents who deviate have a higher payoff in the final network than in the current

network. We use the stable set (von Neumann Morgenstern, 1944), based on indirect dominance

as a solution concept. The farsighted stable set is both internally stable - no network in the set

indirectly dominates another network in the set - and externally stable - every network outside

the set is indirectly dominated by a network belonging to the set. The farsighted stable set can

then be interpreted as a standard of behavior when agents are farsighted.

We show that there always exists a farsighted stable set in a game of network formation

1See for instance Goyal and Moraga (2001), Goyal and Joshi (2003), Goyal and Joshi (2006a), Goyal and

Joshi (2006b), Marinucci and Vergote (2011), Grandjean et al. (2013) for models of competition in networks

competition lying in this class of games.
2Approaches to farsightedness in network formation are suggested by the work of Chwe (1994), Xue (1998),

Herings, Mauleon, and Vannetelbosch (2004), Mauleon and Vannetelbosch (2004), Page, Wooders and Kamat

(2005), Dutta, Ghosal, and Ray (2005), Herings, Mauleon, and Vannetelbosch (2004), Page and Wooders (2009),

Herings, Mauleon, and Vannetelbosch (2014), and Ray and Vohra (2015).
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among rivals satisfying strong degree monotonicity and minority economies to scale. It is either

composed of dominant group networks, or of 2-clique networks. In a dominant group network,

each member of the group is connected to the other group members while the remaining agents

are not connected and do not take part in the competition. Networking then endogenously

creates a barrier to entry. In a network composed of two asymmetric cliques, each agent belongs

either to a large or to a small group of connected agents, and each agent is an active competitor.

The first property needed to establish this result, strong degree monotonicity, implies that agents

who have the same degree find increasing their degree worthwhile. The second one, minority

economies to scale, imposes that the payoff of agents in a small clique increases in the size of

the clique when they are facing another clique with the majority of agents.

We then analyze the efficient networks in a game of network formation among rivals when two

properties hold. The first property, welfare improving switches, imposes that the sum of payoffs

increases after a switch - by which one agent’s degree increases while that of a less connected

agent decreases - when the agents whose degree decreases remains active in the competition.

The second one, switch externalities, imposes that agents who are not involved in the switch are

not hurt by it. We then show that the networks that maximize the sum of payoffs are nested

split graphs when agents are active in every network.3 Otherwise, when poorly connected agents

may decide not to participate in the competition, a switch may no longer be welfare improving if

it leads to the exclusion of the agent hurt by the switch. We then find that the efficient network

is either a core-periphery network or a (quasi-)nested split graph.4

The four properties we impose are satisfied in many models of network formation among

rivals. We show that they are satisfied in a model of bilateral R&D agreements among differ-

entiated firms and in Grandjean et al. (2013)’s model of cooperation among rivals in a Tullock

contest. The patent races’ model of Goyal and Joshi (2006) satisfies strong degree monotonicity

and minority economies to scale but violates welfare improving switch.

The structure of stable and efficient networks is in general different. There is a tension

between the networks that are formed by agents and those that would produce the highest sum

of payoffs. In a stable network, competitors cooperate with equally connected agents while the

sum of payoffs would be higher if the links were more unequally distributed. In Goyal and Joshi

(2003)’s model of R&D network formation for example, firms with more partners produce more

since they have a smaller marginal cost. The benefit of a new partnership is thus increasing

in a firm’s degree since it affects a larger volume of production. Firms in the large clique do

not cooperate with those in the small one, and as such do not completely exploit R&D network

benefits, leading to the aforementioned inefficiencies.

Our theoretical predictions mirror empirical findings on and policy concerns about cooper-

3Nested split graphs are networks such that each agent is connected to other agents with fewer links. The

network structures are presented in Figure 2.
4Core-periphery networks are networks in which some agents in the core are connected to every other agent,

while agents in the periphery are only connected to agents in the core.
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ation among rivals. Hochberg et al. (2010) show that networking may create barriers to entry

for the supply of venture capital. Regibeau and Rockett (2011) indicate that cross-licensing

agreements may warrant antitrust scrutiny. Bekkers et al. (2002) have documented Motorola’s

successful attempt in the eighties at creating a group of 5 dominant firms in the GSM industry

by forming cross-licensing agreements with these firms and refusing agreements with outsiders.

Motorola and its competitors influenced the market structure and ended up dominating the

GSM industry. Howard (2009 and 2013) provides another striking example in the seed industry,

where six of the nine largest firms have closely cooperated through cross-licensing agreements

while the other three have formed joint ventures to share research output and expertise. Figure

1 (Howard, 2013) illustrates5 that, by September 2013, two collaborating “cliques” had formed.

Figure 1. R&D collaboration in the seed industry (Howard, 2013)

Cooperation among rivals has been studied in a coalition formation setting.6 Bloch (1995)

shows that firms form two asymmetric coalitions in the cost reducing R&D Cournot model, in

which the largest group comprises 3/4 of the firms. Yi (1997) identifies conditions leading to

the formation of two asymmetric coalitions in the coalitional unanimity game of Bloch (1996).

Our properties, restricted to networks composed of strongly connected components imply

that the conditions in Yi (1997) are satisfied. Thus, forward looking agents forming coalitions

according to the rules of Bloch (1996)’s coalitional unanimity game would form two coalitions.

We find that the farsighted stable set is composed of networks featuring two groups, a strongly

connected component among a majority of the agents, and another group of agents that are

either strongly connected or not connected. Furthermore, the size of the groups is equivalent

in the two approaches. We have identified sufficient conditions for establishing an equivalence

5Black arrows represent cross-licensing agreements while red arrows represent joint ventures.
6See Bloch (2005) for a survey of this literature.
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between the networks formed by farsighted agents and the coalitions formed among forward

looking agents. These conditions are also necessary. By means of example, we show that the

equivalence no longer holds when minority economies to scale is violated.

In a network formation setting, farsightedness has been shown to lead to an asymmetric

partition of agents in the work of Roketskiy (2012) and of Mauleon et al. (2014). In Roketskiy

’s (2012) model, the agents’ payoffs are the sum of two terms. The first one is their production,

which is increasing in degree, and the second one is a bonus shared among the agents with the

highest degree. Mauleon et al. (2014) study cost reducing R&D agreements, assuming that

R&D externalities perfectly spread across the network so that each member of a component has

the same marginal cost, like in a coalition.

Westbrock (2010) studies efficient networks by extending the R&D collaboration model in

Goyal and Joshi (2003) to a network game of differentiated oligopoly and finds that when the

participation constraints are not binding, efficient and profit maximizing networks are interlinked

stars.7 Our focus is on a class of games that includes the model in Goyal and Joshi (2003). Our

predictions are more precise than those of Westbrock (2010), and we also analyze the case

where participation constraints are binding. König et al. (2012) study R&D collaborations with

network dependent indirect spillovers and show that the efficient network structure is a nested

split graph. In a standard linear quadratic utility function with local synergies (Ballester et

al., 2006), Belhadj et al. (2015) show that an efficient network must be a nested split graph in

network games with strategic local complementarity.

The paper is organized as follows. In Section 2 we present our framework and introduce

the notation. In Section 3, we provide three motivating examples. In Sections 4 and 5, we

study respectively pairwise and farsighted stability. Section 6 characterizes the efficient network.

Section 7 concludes.

2 Notation and framework

2.1 Networks

Let N = {1, 2, ..., n} be a finite set of agents. We write gi,j = 1 when a link between i and j

exists and gi,j = 0 otherwise. A network g = {(gi,j)i,j∈N} is the list of pairs of individuals who

are linked to each other. Let gN be the collection of all subsets of N with cardinality 2, so gN

is the complete network. The set of all possible networks on N is denoted by G and consists

of all subsets of gN . The network obtained by adding the link ij to an existing network g is

denoted g + ij and the network that results from deleting the link ij from an existing network

g is denoted g − ij. For any network g, let N(g) = {i ∈ N | ∃ j such that ij ∈ g} be the

7Interlinked star networks are such that each agent with the maximal number of links is connected to each

connected agent.
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set of agents who have at least one link in the network g. Let Ni(g) be the set of agents that

are linked to i : Ni(g) = {j ∈ N | ij ∈ g}. Agent i′s degree in a network g is the number of

links which involve this agent: ni(g) = #Ni(g).8 A path in a network g ∈ G between i and j

is a sequence of agents i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . ,K − 1} with i1 = i

and iK = j. A network g is connected if for each pair of agents i and j such that i 6= j there

exists a path in g between i and j. A component h of a network g is a nonempty subnetwork

h ⊆ g satisfying (i) for all i ∈ N(h) and j ∈ N(h)\{i}, there exists a path in h connecting i

and j, and (ii) for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h. Given a network g, let

K1(g) = {i ∈ N | ni(g) ≥ nj(g) for all j ∈ N} be the set of agents with the highest degree.

For all t ≥ 2, let Kt(g) = {i ∈ N | ni(g) ≥ nj(g) for all j ∈ N\(Ks(g))s<t} be the set of

agents with the highest degree among the agents that are not in K1(g), ...,Kt−1(g). We write

X ↔g Y if there is at least a link between one agent from the agent set X and one agent from

the agent set Y in the network g. Similarly, we write X>gY if each agent in X is connected

to each agent in Y in g, and X⊥gY if there are no links among agents from those sets in g.

Let N−(g) = {i ∈ N(g) | ni(g) ≤ nj(g) for all j ∈ N(g)} be the set of agents in g with the

smallest degree among those that are connected, and let N0(g) be the set of agents that are not

connected in g. For S ⊆ N , let g−S = {jk ∈ g | j /∈ S and k /∈ S} be the set of links among the

agents outside S in the network g.

We now define some networks that play an important role in our analysis (see Figure 2).

Given a set of agents S  N , a dominant group network gS is such that the agents in S are

connected to each other in S while the agents in N\S have no links. In a k-clique network

g = gS1 ∪ ... ∪ gSk , the agents are partitioned into k groups such that there is a link between

every pair of agents in the same group and no link between any two agents in different groups.9

We write a 2-clique network with a clique S involving the majority of agentq by g̃S = gS ∪gN\S .

A network g is a nested split graph with t classes if Ks(g)>gKr(g) for all r ≤ t−s+1. The agents

in class 1 are connected to every connected agent, while the agents in class t are only connected

to the agents in class 1. Similarly, the agents in class 2 are connected to every connected agent

other than those in class t while the agents in class t − 1 are only connected to the agents in

classes 1 and 2, etc. In the nested split graph depicted in Figure 2, there are four classes of

agents. A line between two groups indicates that each agent from one group is connected to every

agent from the other group. In a core-periphery network, each agent in the core is connected to

every other agent while agents in the periphery are only connected to agents in the core. Finally,

each agent has the same degree in a regular network.

8Throughout the paper we note the cardinality of a set X by the lower case letter x.
9A clique is a set of agents S ⊆ N such that there is a link between each pair of agents in S.
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Figure 2. Some network structures.

2.2 Framework

The games of network formation among rivals G which we consider involve n ex-ante identical

agents playing a two-stage game. Agents first form bilateral agreements in the network formation

stage. A network g induces a degree distribution of the agents (n1(g), n2(g), ..., nn(g)), where

the degree represents an agent’s strength, and is the only payoff relevant network statistic.

Each agent i then chooses a strategy σi ∈
∑

in the competition stage. The strategy set
∑

is

identical for each agent in every network, it does not depend on the network and it contains the

strategy ”out”. An agent choosing the strategy ”out” is guaranteed to get a payoff of 0. We

assume that for each network g, there is a unique Nash equilibrium of the game in the second

stage σ∗(g) = (σ∗1(g), σ∗2(g), ..., σ∗n(g)), and we denote agent’s i Nash equilibrium payoff, gross

of linking costs, byπi(g). In a network g, the agents playing a strategy other than ”out” are

the active (or participating) agents K(g). Participating agents obtain a non-negative payoff

at the Nash equilibrium since they would otherwise have a profitable deviation through option

out: πi(g) ≥ 0 iff i ∈ K(g). Uniqueness of the Nash equilibrium then implies that πi(g) > 0 iff

i ∈ K(g).

Two properties relate an agent’s payoff to specific network configurations. The first one

imposes that the stronger an active agent, the higher her payoff, a property which is called

degree monotonicity.

Property 1. Degree monotonicity (P1): πi(g
′) > πi(g) if ni(g

′) > ni(g), nk(g
′) = nk(g)

for all k ∈ N\{i} and πi(g
′) > 0.

The second one imposes that the stronger an active agent, the smaller her rivals’ payoffs, a

property which is called negative externalities.

Property 2. Negative externalities (P2): πj(g
′) < πj(g) if ni(g

′) > ni(g) for some

i 6= j, nk(g
′) = nk(g) for all k ∈ N\{i}, πj(g) > 0 and πi(g

′) > 0.
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These two properties imply that agent i’s payoff is higher than agent j’s payoff in network

g if i′s degree is higher than j′s degree, ni(g) > nj(g) =⇒ πi(g) ≥ πj(g). Indeed let g′ be

such that ni(g
′) = nj(g) and nk(g

′) = nk(g) for k ∈ N\{i}. Then, we have πi(g) > πi(g
′)

by degree monotonicity, πi(g
′) = πj(g

′) by symmetry and uniqueness of the Nash equilibrium,

and πj(g
′) > πj(g) by negative externalities. Degree monotonicity and negative externalities

imply that the non-participating agents’ degree is smaller than participating agents’ degree.

We let Km(g) be the set of weak agents, i.e. the set of participating agents with the smallest

degree in the network g, Km(g) = {i ∈ K(g) | ni(g) ≤ nj(g) for all j ∈ K(g)}. The set of

non-participating agents in g is E(g) = N\K(g) and the set of strong agents, i.e. agents who

have strictly more connections than the weak agents is K+(g) = K(g)\Km(g).

We assume that each link costs c ≥ 0 to the two agents involved in the link. Agent i′s net

payoff is then given by Πi(g) = πi(g)− cni(g). We analyze the structure of stable and efficient

networks in the class of games G when some additional properties are satisfied.10 The first two

properties determine the effect of having more collaborations on payoff.

Property 3, Strong degree monotonicity, imposes that participating agents who have the

same degree find it worthwhile to see their degree increase.

Property 3. Strong degree monotonicity (P3): Πi(g) < Πi(g
′) for i ∈ S ⊆ Kl(g) ⊆

K(g) where g′ is such that nj(g
′) = nj(g) + 1 for all j ∈ S and nj(g

′) = nj(g) for all j ∈ N \ S.

Strong degree monotonicity is stronger than degree monotonicity since it requires that the

benefit of increasing one’s degree outweigh the additional linking cost and the cost of facing

stronger competitors. This property implies that, all else being equal, more cooperation among

equals is better for them. Property 4, Minority economies to scale, imposes that the payoff of

agents in a small clique must increase in the size of the clique when they are facing another

clique with the majority of agents.

Property 4. Minority economies to scale (P4): Πi(g
S ∪ gT ) < Πi(g

S ∪ gT∪{j}) for

i ∈ T if T ⊆ K(gS ∪ gT ), where j /∈ {S ∪ T}, T ∩ S = ∅ and s ≥ n/2.

Properties 5 and 6 determine the effect of a reallocation of links leading to an increase in

one agent’s degree at the expense of a less connected agent. When a network g′ can be obtained

from a network g by a mean preserving spread in the distribution of links favoring i at the

expense of j, we say that g′ is obtained from g by a switch in favor of i relative to j, and write

it g′ ∈ S(g, i, j).

Definition 1. A network g′ is obtained from g by a switch in favor of i relative to j -g′ ∈
S(g, i, j)- if ni(g

′) = ni(g) + 1, nj(g
′) = nj(g)− 1 where ni(g) ≥ nj(g) while nk(g) = nk(g

′) for

all k ∈ N\{i, j}.
10Goyal and Joshi (2006a) and Hellman and Landwher (2014) also propose properties on the payoff function in

adjacent networks, and relate these to the structure of pairwise stable networks.
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A switch leads to a new pattern of collaboration in which the number of partners of agents

are less equally distributed. Property 5, welfare improving switch, imposes that the sum of

payoffs in a network must increase after a switch if the agent whose degree decreases remains

active.

Property 5. Welfare improving switches (P5):
∑

i∈N Πi(g
′) >

∑
i∈N Πi(g) if g′ ∈

S(g, i, j) and j ∈ K(g) ∩K(g′).

Finally Property 6, switch externality, imposes that the payoff of an agent not involved in a

switch among strong agents must not decrease.

Property 6. Switch externalities (P6): πl(g
′) ≥ πl(g) for g′ ∈ S(g, i, j) if j ∈ K+(g)

and l 6= j.

In the rest of the paper, we show that Properties 1-6 are satisfied in standard models of

bilateral cooperation among rivals, and we analyze how they shape the farsighted stable set of

networks, and the set of efficient networks.

3 Motivating examples

We show in this section that Properties 1-6 are satisfied in a class of models of bilateral R&D

agreements among differentiated firms encompassing the standard model of Goyal and Joshi

(2003) and in Grandjean et al. (2013)’s model of cooperation among rivals in a Tullock contest.

The patent races’ model of Goyal and Joshi (2006) satisfies Properties 1-4 but does not satisfy

Property 5.

3.1 R&D cooperation in differentiated oligopoly

Consider the following two-stage game in which n firms first form bilateral R&D agreements

to reduce their marginal cost, and then compete either in quantity or in price. Following Bloch

(1995), Goyal and Joshi (2003) and Westbrock (2010), assume that the marginal cost of a firm

i depends linearly on its degree ci(g) = λ− µni(g), where λ is the marginal cost of an isolated

firm, and µ measures the effect of links on marginal cost. Competition follows the paper by

Singh and Vives (1984). Each firm may sell a single product to a continuum of consumers,

who optimally choose their consumption levels of each good including a numeraire good m. The

utility function of the representative consumer is given by:

U(q1, ..., qn,m) = m+ α
∑
i∈N

qi −
1

2

∑
i∈N

q2
i −

β

2

∑
i∈N

∑
j 6=i

qiqj

The parameter β ∈ (0, 1) represents the substitutability between products. Products are perfect

substitutes if β = 1 and are independent if β = 0. Consumer utility maximization yields a

system of linear inverse demand functions which enter the firm profit maximization problem:
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pi(q =
∑
i∈N

qi) = α− qi − β
∑
j 6=i

qj

Firms either compete in price or quantity. Ledvina and Sircar (2012) provide a full charac-

terization of the Nash equilibria of quantity and price competition in the face of participation

constraints. The Nash equilibrium quantity in the second stage quantity competition, qQi (g), is

uniquely given by

qQi (g) =
1

2 + (k(g)− 1)β
max{0, α−λ+

µ

2− β

(2 + (k(g)− 2)β)ni(g)− β
∑

j∈K(g)\{i}

nj(g)

}
and the Nash equilibrium quantity in the second stage price competition, qPi (g), is uniquely

given by11

qPi (g) = Ψ(k(g), β) max{0, (1− β)(α− λ) + µ

ζ(k(g), β)ni(g)− δ(k(g), β)
∑

j∈K(g)\{i}

nj(g)

}
In both cases, the gross payoffs are πi(g) = qi(g)2.12

For sufficiently small linking costs, we show that Properties 1-6 are satisfied.13

Lemma 1. The differentiated oligopoly model with linear cost reducing R&D ci(g) = λ−µni(g)

satisfies P1− P6 when linking costs are small.

All proofs are in the appendix. Only own degree and the sum of firms’ degrees are payoff

relevant in this game. When participation constraints are not binding, the distribution of firms’

degrees affects the allocation of production among the competitors but does not affect the

total output. After a switch, the output of the firms whose degree remains constant are thus

unchanged (P6). It follows that a switch increases the industry profits since the production does

not change but the total costs of production have decreased as some units are transferred from

the firm whose degree decreases to the firm whose degree increases, and the latter produces the

good at smaller marginal costs (P5). When more collaborations are formed, we show that a

firm’s profit increases when its degree increases in the same proportion as the degree of others.

Thus, when the number of links of each member of a group increases by the same amount, the

payoff of each agent of the group increases (P3). Similarly, an isolated agent and each member

of a minority group get a higher payoff when the former creates a link to each agent in the

11where Ψ(k(g), β) = 1+(k(g)−2)β
(1−β)(1+(k(g)−1)β)(2+(k(g)−3)β)

, ζ(k(g), β) = 2 + (3k(g) − 6)β + (k(g)2 − 5k(g) + 5)β2 and

δ(k(g), β) = (1 + (k(g)− 2)β)β.
12Goyal and Joshi (2003) assume that firms produce homogeneous goods and always produce positive quantities,

that is they assume that β = 1 and (α− λ) > (n− 1)(n− 2)µ. Goyal and Moraga (2001), Deroian and Gannon

(2008), Westbrock (2010), Mauleon et al. (2014) also analyze this model, and rule out the issue of participation.
13We show that the claim holds when there are no linking costs. If Properties 1, 3 and 4 are satisfied for some

linking costs c, they are satisfied for every linking cost c′ smaller than c.
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minority group since the total number of new links is then 2s− 1, and s < n/2 is the size of the

minority clique (P4). We omit here the intuition of the proof for the case where participation

constraints matters. It follows the same logic.

3.2 Bilateral agreements in the Tullock contest

Grandjean et al. (2015) consider n agents involved in a contest to win a prize. Each agent

i chooses a level of effort ei. The cost of effort is the effort itself C(ei) = ei. The profile

of efforts determines the probability that each agent gets the prize, according to the Tullock

contest success function pi(ei, e−i) = ei/
∑

j∈N ej . The valuation of an agent for the prize is

decomposed into a fixed component, and a variable component that depends on the degree of the

agent : vi(g) = v + ni(g)β. The Nash equilibrium choice of effort in a given network g is given

by e∗i (g) = max{0, k(g)−1
k(g) hk(g)(g)(1 − k(g)−1

vi(g)

hk(g)(g)

k(g) )}, where hk(g)(g) = k(g)/(
∑

j∈K(g) 1/vj(g))

is the harmonic mean of the valuations of the participating agents.14 It follows that gross

payoffs are given by vi(g)(e∗i (g)/
∑

j∈N e
∗
j (g))2. From these expressions, one may show that

effort and payoff are increasing in own degrees and decreasing in others’ degrees (P1 and P2).

For sufficiently small linking costs, we show that it also satisfies strong degree monotonicity,

minority economies to scale, welfare improving switch and switch externality.

Lemma 2. The Tullock contest with contest success function pi(ei, e−i) = ei/
∑

j∈N ej, linear

cost of effort C(ei) = ei, and valuation vi(g) = v + ni(g)β satisfies Properties P1 − P6 when

linking costs are small.

When participation constraints are not binding, the intuition for this result is as follows.

Given some number of links in a network, the aggregate wasted efforts are higher when the links

are allocated more equally among agents. The payoff of an agent not involved in a switch thus

increases after a switch since the same effort leads to higher chances of winning the prize (P6).

The sum of efforts is lower after a switch, and the expected valuation of the agent getting the

prize increases. These two effects lead to a higher sum of payoffs (P5). When equal contestants

form new collaborations, their valuation and their chance of getting the prize increases, so

that their payoff is unambiguously higher (P3). When the size of a minority clique increases, we

show that each member of the clique gets the prize with higher probability even if the new clique

members increase their effort more than others do. They get the prize with higher probability

and have a greater valuation for it, so that their payoff is higher (P4).

3.3 Patent Races

The following example is taken from Goyal and Joshi (2006). Consider n innovators who want

to be the first to invent a new product which has a patent value equal to 1. Time is continuous

and all innovators discount the future at rate δ. Innovators are endowed with one unit of

14Hillman and Riley (1989) are the first to show that the participation of all agents is not guaranteed when the

valuations of agents is too asymmetric. See also Stein (2002), Cornes and Hartley (2005), and Ryvkin (2013).
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R&D capability and can share their capability with others to speed up their innovation process.

Denote τ(ni(g)) the random time at which innovator i develops a new product in network g and

assume that τ has an exponential distribution:

Pr {τ(ni(g)) ≤ t} = 1− e−ni(g)t

Having more links thus shortens the expected innovation time. However, other innovators

may obtain the new product before innovator i does. Stochastic independence of the distributions

of the time of innovation implies that the expected profit of innovator i in network g is equal to:

πi(g) =
ni(g)

δ +
∑

k∈N nk(g)

Lemma 3. The patent race game of Goyal and Joshi (2006) satisfies Properties P1-P4 when

linking costs are small. It does not satisfy P5.

The benefit a firm obtain by forming a new collaboration, as specified in P3 and P4, always

outweighs the cost of facing other firms who also become faster innovators. This arises as the

modification of the network is such that the degree of a firm who has an additional partner

increases relatively more than the total number of collaborations. In contrast to the previous

models, the firms always participate in this model and the allocation of links among firms has

no impact on the sum of payoffs. A switch does not affect the payoff of the firms not involved

in it, and the gain of the firm whose degree increases is exactly compensated by the loss of the

firm whose degree decreases. P5 is not satisfied.

4 Pairwise stable networks

Jackson and Wolinsky (1996) have introduced the notion of pairwise stability to characterize the

networks immune to a single link addition or deletion. A network is pairwise stable if no agent

benefits from severing one of his links and no two agents benefit from adding a link between

them, with one benefiting strictly and the other at least weakly.

Definition 2. A network g is pairwise stable if

(i) Πi(g) ≥ Πi(g − ij) and Πj(g) ≥ Πj(g − ij) for each ij ∈ g,

(ii) Πi(g + ij) > Πi(g), then Πj(g + ij) < Πj(g) for each ij /∈ g.

The set of pairwise stable networks of a game Γ ∈ G is such that connected agents participate,

since otherwise they would get a negative payoff and could profitably delete links. If the game

also satisfies strong degree monotonicity (P3), every connected agent is linked to every other

agent agent with the same number of links in a pairwise stable network, since otherwise their

would exist a pair of agents that could profitable add a link. Agents without links may be

unconnected in a pairwise stable network if they do not participate. Let GPS be the set of
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pairwise stable networks. Let G∗ = {g ∈ G |ij ∈ g if i, j ∈ Kt(g) ⊆ K(g), and ij /∈ g if

{i, j} * K(g)} be the set of networks such that each participating agent with the same degree

is connected, and where non-participating agents are not connected. A pairwise stable network

belongs to this set.

Proposition 1. Let Γ ∈ G. We have GPS ⊆ G∗ if Property 3 holds.

A pairwise stable network is composed of cliques with agents having the same degree. Agents

in different cliques do not have the same degree. Also, each agent in a clique has the same number

of links towards agents in other cliques. The complete network is always pairwise stable. If agents

deviate from the complete network by cutting a link, they either reach a network g′ where he is

not participating or where he is participating but not connected to agents with the same degree.

In both cases, they are better off by maintaining their links. Dominant group networks fall into

this class provided isolated agents do not participate. A dominant group network is pairwise

stable if in addition two isolated agents do not participate by forming a link. Network formation

can thus endogenously create a barrier to entry for ex ante symmetric agents. Dominant group

networks are the only pairwise stable networks in the product differentiation or Tullock models

since any two participating agents are better off by forming a link in these games, not only those

with the same degree. A network composed of completely connected components of different

sizes is also in G∗. Such a network is pairwise stable if agents in different components are not

better off when they form a link.

5 von Neumann-Morgenstern farsighted stability

In this section, we analyze the formation of networks among rivals when agents are farsighted,

i.e. when they anticipate how other agents would react to their choice of partners. We use the

notion of indirect dominance in Harsanyi (1974) to account for farsighted behavior. A network

g indirectly dominates a network g′ if there exists a sequence of networks that implements g

over g′ such that in every network in the sequence gk, all deviating agents have a higher payoff

in the end network g than in the current network gk. In a network gk in the sequence from g′ to

g, any group of agents S ⊆ N may enforce the network gk+1 over gk if the links that are created

involve two agents from S while those that are deleted involve at least an agent from S.

Formally, enforceability and indirect dominance are defined as follows.

Definition 3. Given a network g, a coalition S ⊆ N is said to be able to enforce a network g′

if

(i) ij ∈ g but ij /∈ g′ =⇒ {i, j} ∩ S 6= ∅
(ii) ij /∈ g but ij ∈ g′ =⇒ {i, j} ⊆ S

We then have;
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Definition 4. A network g is indirectly dominated by a network g′, or g � g′, if there exists

a sequence of networks g0, g1, ..., gT (where g0 = g and gT = g′) and a sequence of coalitions

S0, S1, ..., ST−1 such that for any t ∈ {1, 2, ..., T},
(i) πi(gT ) > πi(gt−1) for all i ∈ St−1, and

(ii) coalition St−1 can enforce the network gt over gt−1.

We use the notion of indirect dominance in the stable set of von Neumann and Morgenstern

(1944). A farsighted stable set of networks is such that no network in the set indirectly dominates

another network in the set (internal stability) and each network which is not in the set is

indirectly dominated by a network in the set (external stability). A deviation from a stable

network leading to a network outside the set is deterred since at least one deviator is worse off

in a stable network that indirectly dominates this network.

Definition 5. A set of networks G ⊆ G is a von Neumann-Morgenstern farsighted stable

set of a game Γ ∈ G if

(i) for all g ∈ G, there does not exist g′ ∈ G such that g � g′, and

(ii) for all g′ /∈ G, there exists g ∈ G such that g′ � g.

We show that a von Neumann-Morgenstern farsighted stable set always exists in a network

formation game among rivals satisfying strong degree monotonicity (P3) and minority economies

to scale (P4). We use three thresold values in the characterization of a farsighted stable set. Let

s̃ ∈ {int(n+ 1)/2, ..., n} be the smallest size of a clique S such that the remaining agents do not

participate in the 2-clique network g̃S : K(g̃S) = S and K(g̃S\{k}) = N for k ∈ S. We denote

by ŝ ∈ {s̃, ..., n} the size of the clique that maximizes the per capita value π̂ of its members,

among the cliques which ensure that the remaining agents do not participate (ŝ ≥ s̃). Finally,

we let s ∈ {int(n+ 1)/2, ..., s̃− 1} be the size of the large clique that maximizes the per capita

payoff of its members π when the remaining agents form another clique and participate. For

i ∈ S, we have ŝ ∈ arg maxs∈{s̃,...,n} Πi(g
S), π̂ = maxs∈{s̃,...,n} Πi(g

S), s ∈ arg maxs∈{1,...,s̃−1}

Πi(g̃
S) and π = maxs∈{1,...,s̃−1} Πi(g̃

S).15 Farsighted agents either form one large clique to drive

the remaining agents out of the market, or they form a smaller clique to reduce the number of

strong competitors and accommodate participation from the entire set of agents.

In Proposition 2, we show that the set of dominant group networks of size ŝ is a von Neumann-

Morgenstern farsighted stable set if and only if π̂ > π when the game satisfies strong degree

monotonicity.

Proposition 2. Let Γ ∈ G satisfy Property 3. Then, GFS1 = {gS | s = ŝ} is a vNM farsighted

stable set iff π̂ > π.

The intuition of the proof of Proposition 2 is as follows. A network gT in the set GFS1 is not

indirectly dominated by another gT
′

since on every path from gT to gT
′
, each member of T has a

payoff of π̂ in the first network g′ where some members of T modify the network, and thus do not

15For simplicity, we assume that arg maxs≥s̃ Πi(g
S) and arg maxs≤s̃−1 Πi(g̃

S) are singleton sets.
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benefit from the deviation. The set GFS1 thus satisfies internal stability. We then propose an

algorithm to generate a path from a network g′ outside the set leading to some network g in the

set such that g′ is indirectly dominated by g. We briefly describe the steps of the algorithm. In

the first step, agents delete links in order to reach a network where at least ŝ agents are isolated.

In the second step, the isolated agents form a clique, leading to the exclusion of the remaining

agents. The first step is trickier and we explain it in detail here. From the initial network, we

let the agents with a payoff smaller than π̂ successively delete their links until a network g′′ is

reached where either ŝ agents are isolated and then jump directly to the second step, or where

each connected agent has a payoff greater than π̂. In this last case, there should be less than s̃

connected agents in the network g′′.16 We then let the unconnected agents create links until they

all have the same degree as an agent i with the lowest degree among those that are connected in

g′′, or until they are completely connected. The network reached this way is g′′′ and the payoff

of agent i in g′′′ is smaller than π̂.17 The agents with no links in g′′ and agent i then delete their

links. The path proposed is such that at each step, at least one additional agent cuts her links.

After a finite number of iterations, ŝ agents are isolated so that the second step is reached with

probability 1. In the second step, isolated agents form a complete component. The remaining

agents do not participate and delete their useless links. By construction, the path does not reach

a dominant group network of size ŝ in an intermediate step, as there would be agents who delete

their links in a network where their payoff is positive and who end up not participating in the

final network. It follows that the condition π̂ > π is sufficient for the set GFS1 to be a vNM

farsighted stable set. It is also necessary since a network composed of two cliques of size s and

n− s is not indirectly dominated by a network in the set when π̂ ≤ π.

In Proposition 3, we show that the set of networks composed of two cliques of size s and

n − s is a von Neumann-Morgenstern farsighted stable set if and only if π̂ > π when the game

satisfies strong link monotonicity (P3) and minority economies to scale (P4).

Proposition 3. Let Γ ∈ G satisfy Property 3 and Property 4. The set GFS2 = {g ⊆ gN | g = g̃S

such that #S = s} is a vNM farsighted stable set if and only if π > π̂.

The intuition for Proposition 3 is as follows. No network g̃T in the set GFS2 is indirectly

dominated by another network in that set, say g̃T
′
, since in every path from g̃T to g̃T

′
, each

member of T has a payoff greater than π in the first network g′ where some members of T modify

the network. The set GFS2 thus satisfies internal stability. External stability is also satisfied.

To show this, we propose an algorithm that generates a path from any network g′ not in the

set GFS2 to some network g in the set satisfying indirect dominance. At each step on the path,

agents with a payoff smaller than π delete their links until a network g′′ is reached where either

16The payoff of a connected agent with the smallest degree in a network with s ≥ s̃ connected agents is smaller

than in a clique among s agents, and is thus smaller than π̂.
17Each agent participates in the network g′′′. In the first case, agent i has the lowest degree in the current

network, and would be better off in the complete network, and thus in the end network. In the other case, we

have Πi(g
′′′) ≤ π < π̂.
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s agents are isolated, or where each connected agent has a payoff greater than π. In the first

case, let the unconnected agents form a clique, then among the remaining agents, let the agent

with the smallest degree successively delete his links and when they are all unconnected, they

form the second clique.18 In the second case, unconnected agents create links until they all have

the same degree as an agent i with the lowest degree among those that are connected in g′′, or

until they are completely connected. The network reached this way is g′′′ and the payoff of agent

i in g′′′ is smaller than π. The agents with no links in g′′ and agent i then delete their links.

The path proposed is such that at each step, at least one additional agent cuts his links. After

a finite number of iterations, s agents are isolated and may form the large clique. It follows

that the condition π > π̂ is sufficient for the set GFS2 to be a vNM farsighted stable set. It is

also necessary since a network composed of one clique of size ŝ is not indirectly dominated by a

network in the set when π̂ ≥ π.

Propositions 2 and 3 thus establish the existence of a singleton (up to all permutations) von

Neumann-Morgenstern farsighted stable set of networks GFS , where GFS = GFS1 if π̂ > π while

GFS = GFS2 if π̂ < π. The agents are partitioned into two groups {S∗, N \S∗} where the size of

the large group S∗ is ŝ if π̂ > π or s if π̂ < π. When cooperation only matters through the number

of partners, one could draw a parallel between a coalition in the coalition formation approach

and a clique in the network formation approach. For instance Bloch’s (1995) model of group

formation and Goyal and Joshi’s (2003) model of network formation among agents competing

in quantity both lead to the same profile of marginal costs, and thus to the same second stage

equilibrium payoff, when a clique structure in Goyal and Joshi (2003) mirrors a group structure

in Bloch (1995). Yi (1997) shows that ex ante symmetric agents form the partition {S∗, N \ S∗}
in the coalition unanimity game19 provided conditions (C1)-(C4) are satisfied: (C1) when two

coalitions merge, the remaining agents are worse off, (C2) a member of a coalition is better

off if her coalition merges with a larger coalition, (C3) a member of a coalition is better off

if she leaves a coalition to join another larger one, and (C4) members of any coalition of size

s ≤ n/2 do not want to exclude a member. The partition of the agents in a farsighted stable

network is equivalent to the subgame perfect equilibrium in Bloch’s (1996) coalition unanimity

game. When minority economies to scale is not satisfied, this equivalence does no longer hold,

as illustrated by the following example.

18The payoff of an agent who is in the small clique in the end network is smaller than π in a network where

she deviates, either by minority economies to scale if she deletes links or by strong degree monotonicity when the

second clique is formed.
19The rules of the coalition unanimity game are as follows. Agents are ranked according to an exogenous rule of

order. The first agent proposes the formation of a coalition. If all members of this proposed coalition agree, then

the coalition is formed and can no longer be dissolved and the game continues. In this game, the first agent in

the updated ranking after removing the first coalition, makes the next proposal. If one agent rejects the proposal,

she becomes the initiator in the next round. The proposer of a coalition and its potential members must thus

foresee the coalition structure which will eventually prevail in order to decide on the current coalitional proposal.
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Example 1. Consider N = {1, 2, ..., 6} firms competing in quantities. The marginal cost of an

agent i depends on her degree in the network g in the following way: ci(g) = c(ni(g)) where

c(0) = 0.25, c(1) = 0, 15, c(2) = 0, 126, c(3) = 0, 116, c(4) = 0, 106 and c(5) = 0, 1. The linear

inverse demand curve is p = 1−
∑
i∈N

qi. The participation constraints never bind and hence:

qi =
1

n+ 1

[
1− nc(ni(g)) +

∑
j∈N\{i}

c(nj(g))

]

The cost of forming a link is equal to ε > 0, where ε is arbitrarily small. This game satisfies

negative externalities and strong degree monotonicity. Minority economies to scale are violated

since agents in the group with two firms prefer to keep the isolated agent without connections

rather than to form a clique with her. Assuming that the marginal cost of a firm in a coalition

of size s is given by c(s− 1), the equilibrium coalition structure of the coalition unanimity game

is a partition of the six agents into a group of 3 agents, another of 2 agents and a singleton. Let

g1 = gS1 ∪gS2 ∪gS3 be a network composed of three cliques S1 = {1, 2, 3} , S2 = {4, 5} , S3 = {6}.
With a slight abuse of notation, we write g1 = {123, 45, 6} . The set of permutations of g1 which

do not mutually indirectly dominate each other is given by G1 = {g1, g2, g3, g4, g5, g6} where:

g1 = {123, 45, 6}

g2 = {123, 46, 5}

g3 = {123, 56, 4}

g4 = {126, 45, 3}

g5 = {136, 45, 2}

g6 = {236, 45, 1}

Set G1 is internally stable. One can easily verify that every other permutation of g1 is indirectly

dominated by a network in G1since in such network at least two agents who can improve them-

selves in a network in G1 are not linked and can start a farsighted improving path by forming a

link. It follows that every von Neumann Morgenstern farsighted stable set G containing solely

g1 and permutations of it must be G1. However, G1 does not satisfy external stability as no

network in G1 indirectly dominates g7 = {12, 13, 24, 35} for instance.

When the farsighted stable set of networks is composed of dominant group networks (GFS =

GFS1), a farsighted stable network g is also pairwise stable. Indeed, an agent does not find it

profitable to delete a link from g by strong degree monotonicity, while an isolated agent does

not gain by adding a link since she would remain inactive. When the farsighted stable set

of networks is composed of asymmetric cliques (GFS = GFS2), a farsighted stable network is

pairwise stable if two agents from different cliques do not find it profitable to add a link.
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6 Efficiency

In this section, we analyze the relationship between the network architecture and the sum of

payoffs to the agents in a game Γ ∈ G satisfying Properties 5 and 6. A network is efficient if no

other network generates a higher sum of payoffs W (g) =
∑

i∈N Πi(g).

Definition 6. A network g ∈ G is efficient if W (g) ≥W (g′) for all g′ ∈ G.

Switching from a network g to another network g′ plays a crucial role in our discussion.

There is a switch from g to g′ if the degree of one agent increases by one unit and that of

a less connected agent decreases by one unit, while the number of partners of the remaining

agents does not change. A switch leads to a mean-preserving spread in the distribution of links.

The number of links and thus the total linking costs do not change after a switch. A welfare-

improving switch (P5) imposes that the sum of payoffs increases after a switch if the agent

whose degree decreases remains active. In the product differentiation model for example, such

a switch leads to a reallocation of some units of production from one firm to another whose

cost of production is smaller, reducing the total production cost for a fixed aggregate quantity.

A switch leading to the exclusion of the agent whose degree decreases could reduce the sum of

payoffs in some applications, as illustrated in Example 2.

Example 2. Let Γ be the Tullock contest model of Grandjean et al. (2015) presented in Section

3.2 with n = 11, v = 0 and β = 1. Let g be such that agent 1 is connected to all the other

agents, agent 2 is connected to 1, 3, 4 and 5, and agent 3 is connected to 1, 2 and 6, that

is g = {i1i2, i1i3, ..., i1i11, i2i3, i2i4, i2i5, i3i6}. The valuation of the contestants for the prize

in network g is then given by v1(g) = 10, v2(g) = 4, v3(g) = 3 and vk(g) ≤ 2 for k ≥ 4.

Agents 1, 2 and 3 participate and respectively get a payoff of π1(g) = 5.003, π2(g) = 0.288,

and π3(g) = 0.002. Let network g′ be obtained from g by replacing the link i3i6 by the link

i2i6. Only agents 1 and 2 participate in g′, and respectively get a payoff of π1(g′) = 4.444 and

π2(g′) = 0.555. The sum of payoffs is smaller in g′ than in g even though the distribution of

links under g′ is a mean preserving spread of the distribution of links under g.

Switch externalities (P6) impose that the payoff of an agent not involved in a switch among

strong agents cannot decrease. Jointly with P5, it implies that the set of participating agents

does not shrink after a switch among strong agents from g to g′, so that the sum of payoffs

increases.

Nested split graphs were introduced by Cvetkovic and Rowlinson (1990) and Mahadev and

Peled (1995). Agents in a nested split graph can be decomposed into t classes such that an agent

in class s is connected to each agent in class 1 to t−s+1. The agents in class 1 are connected to

every connected agent. A network is immune to switches if and only if it is a nested split graph.

By P5, it follows that the efficient network is a nested split graph if agents are active in every

network configuration.
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Proposition 4. Let Γ satisfy Property 5. The efficient network of the game Γ is a nested split

graph if K(g) = N for all g ∈ G.

Links are costly to establish. It follows that links cannot be reallocated from an efficient

network so that the total number of links is reduced, while the set of participating agents and

their degree are unchanged. For a given network g, let C−(g) be the set of networks g′ where

(i) the degree distribution of the participating agents is as in g, (ii) the total number of links is

smaller than in g, and (iii) each non-participating agent in g has at most k links in g′, where

k is the number of links of the non-participating agent with the highest degree in network g.

The third condition is a sufficient condition to ensure that the set of participating agents is the

same in both networks. Formally, C−(g) = {g′ ∈ G |(i) nl(g) = nl(g
′) for all l ∈ K(g), (ii)∑

k∈N nk(g) >
∑

k∈N nk(g
′), and (iii) maxl∈E(g) nl(g) ≥ maxl∈E(g) nl(g

′).

We have seen that a switch involving a weak agent may reduce the set of participating agents

and hence the sum of payoffs. On the other hand, P5 and P6 ensure that a switch among strong

agents increases the sum of payoffs. In Lemma 4, we show that the sum of payoffs also increases

by moving from g to g′ if (i) one strong agent has one more partner in g′ than in g, at the

expense of another strong agent with fewer partners in g, (ii) every other participating agent

has the same degree in both networks, (iii) every non-participating agent in g has at most k links

in g′ where k is the number of links of the non-participating agent with the highest degree in

network g, and (iv) the total number of links is the same in both networks. We denote the set of

networks g′ obtained in this way from g by S∗(g, i, j), where i is the strong agent whose degree

has increased at the expense of j. Formally, for g ∈ G and i, j ∈ K+(g) such that ni(g) ≥ nj(g),

let S∗(g, i, j) = {g′ ∈ G |(i) ni(g′) = ni(g) + 1, nj(g
′) = nj(g) − 1, (ii) nk(g

′) = nk(g) for all

k ∈ K(g)\{i, j}, (iii) nk(g
′) ≤ maxl∈E(g) nl(g) for all k ∈ E(g), and (iv)

∑
ni(g

′) =
∑
ni(g)}.

Lemma 4. Let Γ ∈ G satisfy Property 5 and Property 6. Let g, g′ ∈ G be such that g′ ∈
S∗(g, i, j). We have W (g′) > W (g).

To prove this result, we construct a network g′′ where the degree of each agent who par-

ticipates in g does not change g, while the degree of each agent who does not participate in g

does not change g′. The set of participating agents, their degree distribution, and their payoff

are then equal in g and g′′. Also, the sum of payoffs in g′ is higher than in g′′, and thus higher

than in g, since g′ is obtained by a switch among strong agents from g′′. In what follows, with

a slight abuse of notation, we say that g′ is obtained from a switch among strong agents from g

if g′ ∈ S∗(g, i, j).

When agents do not participate in some type of network configuration, an efficient network

necessarily minimizes the linking costs given the degree distribution of the participating agents,

and is immune to switches among strong agents.

Let G be the set of networks satisfying these constraints. Formally,

G = {g ∈ G | (i) C−(g) = {∅} and (ii) @g′ ∈ G such that g′ ∈ S∗(g, i, j)}
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We decompose the set G into three subsets. Let G1 = {g ∈ G | K1(g) = K(g)} be the set

of networks that are in G such that the set of participating agents have the same degree. Let

G2 = {g ∈ G\G1 | gK
+(g) ⊆ g} be the set of networks that are in G\G1 such that strong agents

form a clique. Finally, let G3 = {g ∈ G\G1 | gK
+(g) * g} be the set of networks that are in

G\G1 such that strong agents are not completely connected. From the definition of G1,G2 and

G3, their intersection is empty and their union is G. We now analyze how the two defining

conditions of G shape the sets G1, G2 and G3.

Proposition 5 shows that a network g inG1 is either a quasi-regular network on a set of agents,

or a core-periphery network.20 Quasi-regular networks on the set of participating agents range

from empty to dominant group networks, and core-periphery networks range from dominant

group networks to nested split graphs with two groups.

Proposition 5. A network g ∈ G1 is either a quasi-regular network on a set of agents K ⊆ N ,

or a core-periphery network.

The intuition for the proof of Proposition 5 is as follows. Let a network g in G1 be such

that the participating agents are not entirely connected to each other. There is in this case at

most one link from a participating agent to a non-participating agent since it would otherwise

be possible to replace two links by one and keep the degree distribution of participating agents

unaffected. Network g is then a quasi-regular network on the set of participating agents. Since

non-participating agents are not connected to each other in a network g ∈ G, the network is a

core-periphery network if the participating agents are completely connected to each other.

In a network g in G2, the strong agents are completely connected to each other. We show

in Proposition 6 that network g is a nested split graph if weak agents are only connected to

strong agents. Otherwise, all strong agents but one are connected to each participating agent. In

addition, if there is a link between a weak agent and a non-participating agent, then all strong

agents but one are connected to the entire population.

Proposition 6. Let g ∈ G2, then

(i) If (E(g) ∪Km(g))⊥gKm(g), then g is a nested split graph

(ii) If Km(g)↔g Km(g), then K(g)>gK+(g)\{i1}
(iii) If Km(g)↔g E(g), then N>gK+(g)\{i1}

The intuition for the proof of Proposition 6 is as follows. If agents are only connected to

strong agents, they should be connected to the strong agents with the highest degree since

otherwise there could be a switch among strong agents. If weak agents are only connected to

strong agents, each link in the network involves at least one strong agent so that the network

20A quasi-regular network on a set of agents K ⊆ N is a network g such that ni(g) = nj(g) for all i, j ∈ K,

and
∑
j /∈K nj(g) ≤ 1.
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should be a nested split graph. If network g in G2 involves connections among weak agents, all

weak agents but the one with the smallest number of strong partners should be connected to all

strong agents but the one with the smallest number of partners i1. Indeed, if two weak agents

are not connected to two strong agents, a switch could be obtained, replacing a link between

two weak agents and another link between two strong agents by a link between the two weak

agents and the same strong agent. It follows that i1 should have some connections towards weak

or non-participating agents since she has more links than weak agents. Thus, all weak agents

should be connected to all strong agents but i1. Indeed, otherwise a link involving i1 could

be replaced by another involving another strong agent. If there is a link between weak agents

and non-participating agents in network g, non-participating agents should then be connected

to all strong agents but i1. For example, if participating agents form a clique, then i1 should

be connected to non-participating agents, say e1, since she has more links than weak agents.

Thus, if a non-participating agent is not connected to a strong agent other than i1, the link

i1e1 could be replaced by this missing link. If a network g ∈ G2 is not a nested split graph,

it is a quasi-nested split graph. In a quasi-nested split graph, a switch is possible but only at

the expense of a weak agent. For example, let N = {i1, i2, i3, i4, j1, j2, j3, j4} and let g be such

that {i2, i3, i4}>gN , and i1j1, i1j2, j3j4 ∈ g. If K(g) = N , then g ∈ G2. The network g is a

quasi-nested split graph.

Proposition 7 shows that networks in G3 are nested split graphs.

Proposition 7. Let g ∈ G3. Then, g is a nested-split graph.

The intuition for the proof of Proposition 7 is as follows. Let i1 be the strong agent with

the lowest degree and i2 be the one with fewer partners among the remaining strong agents in

a network g in G3. These agents are not connected to each other by definition of G3. In a first

step, we show that i1 is not connected to non-participating agents. Indeed, if it was the case,

say i1 and the non-participating agent e1 were connected, e1 should be connected to each strong

agent to avoid switches and it would be possible to save on linking costs by replacing the links

i1e1 and i2e1 by the link i1i2. In a second step, we further show that i1 cannot be connected

to a weak agent, say j. To see this, notice that if it was the case, j should be connected to

all strong agents to avoid switches. As a consequence i1 should have some other connections to

weak agents and weak agents should not be completely connected since the degree of i1 is higher

than that of a weak agent. Then, the degree of i2 at the expense of i1 could be increased by

forming the link between these agents and cutting two links between i1 and weak agents, while

creating a link between two weak agents and rearranging these links so that they keep the same

degree. In a third step, we show that weak agents are only connected to strong agents. If it

was not the case, then i1 should be connected to two strong agents to whom a weak agent is

not connected since her degree is higher and the degree of one of these two strong agents could

be increased at the expense of the other. Since each link in the network involves at least one

strong agent, the network should be a nested split graph as a switch among strong agents would
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otherwise be feasible.

The efficient networks in a game satisfying Properties 5 and 6 belong to the set of networks

G. Networks in G that are not nested split graphs are not immune to switches at the expense

of a weak agent. They are thus not efficient if the agent whose degree is reduced by a switch

remains active. Otherwise, a network in G may not be efficient because another network in G

generates a higher welfare.

Asymmetric cliques are never efficient. Indeed, the sum of payoffs could be increased by

cutting a link in the two cliques, and adding two links between the agents in the small clique

who are not connected and an agent in the large clique.

7 Conclusion

In this paper, we have studied the formation of bilateral agreements when cooperation between

pairs of agents creates negative externalities for the remaining agents. This occurs for example

when firms share patents through cross-licensing agreements or share the cost of joint R&D

projects, or when countries sign bilateral trade agreements. In these applications, the number

of competitors is usually rather small and the stakes are high. This motivates us to depart

from the standard stability notions in network formation which assume that agents are myopic.

Rather, we analyze networks formed by farsighted agents, that is by agents who forecast how

other agents would react to their choice of partners, and make a decision by comparing the

current network to the end network which is formed when other agents have further deviated.

We use the notion of von Neumann-Morgenstern farsighted stable set, which can be interpreted

as a standard of behavior when agents are farsighted.

We show that there always exists a farsighted stable set in a game of network formation

among rivals satisfying strong degree monotonicity and minority economies to scale. It is either

composed of dominant group networks, where isolated agents are excluded from the market, or of

networks composed of two asymmetric cliques. Our results thus support two empirically relevant

properties of observed R&D and cross-licensing networks: barriers to entry and clustering.

We then show that the efficient network is a nested split graph when the game satisfies

welfare-improving switching if agents are active in every network. Otherwise, if agents prefer to

leave the market in some network configurations, the efficient networks are (quasi-)nested split

graphs, quasi-regular networks or core-periphery networks when welfare-improving switches and

switch externalities are satisfied. As a result, the structure of stable and efficient networks is in

general different, resulting in a tension between networks which are formed by agents and those

which would produce the highest sum of payoffs.

The four properties we impose are satisfied in many models of network formation among

rivals. We show it is the case in a model of bilateral R&D agreements among differentiated
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firms, in Grandjean et al. (2013)’s model of cooperation among rivals in a Tullock contest, and

in Goyal and Joshi (2006)’s model of patent races.

We conclude this paper with some directions for future research. First, we have identified

one farsighted stable set out of possibly many. We do not know at this stage whether other

candidates exist, and if some exist, identifying all the candidates is probably not a realistic

task. The candidates to consider could be restricted, for example by only considering the sets

composed of one network and its permutations. One could also analyze whether our properties

could be strengthened to guarantee that our candidate is unique.

Second, one could go in the other direction and study which networks would form if our

properties were weakened. In particular, one could ask whether a set composed of a k-clique

network and its permutations could be farsighted stable if minority economies to scale were not

satisfied.

Third, it would be interesting to analyze the case of positive externalities, where the forma-

tion of an agreement between two agents benefits the other agents. This occurs for instance in

Belleflamme and Bloch (2004)’s model of market-sharing agreements, where firms may commit

not to compete in each other’s markets, thereby reducing competition in these markets and

increasing the profit of outsiders.
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8 Appendix

Appendix A. Proofs of Section 3

Proof of Lemma 1.

Property 3. Strong degree monotonicity:

Let g ∈ G. Let S ⊆ Kl(g) ⊆ K(g). For all i ∈ S, let ni(g
′) = ni(g) + 1 and for all i /∈ S, let

ni(g
′) = ni(g). We show that πi(g

′)− πi(g) = qi(g
′)2 − qi(g)2 > 0 for i ∈ S.

Let us write qi(g
′)2− qi(g)2 = (qi(g

′)− qi(g))(qi(g
′) + qi(g)). We show that qi(g

′)− qi(g) > 0.

Notice that K(g′) ⊆ K(g)

by negative externalities.

(i) Suppose K(g) = K(g′).

(i.1) In the quantity competition version of the model, we have

qQi (g′)− qQi (g) =
1

2 + (k(g)− 1)β

µ

2− β
[(2 + (k(g)− 2)β)− β(s− 1)] > 0,

where the inequality comes from k(g) ≥ s and β ∈ (0, 1).

(i.2) In the price competition version of the model, we have

qPi (g′)− qPi (g) = Ψ(k(g), β, µ)
[
2 + (3k(g)− 6)β + (k(g)2 − 5k(g) + 5)β2 − (1 + (k(g)− 2)β)β(s− 1)

]
Since s ≤ k(g) and qPi (g′)− qPi (g) is decreasing in s, we have

qPi (g′)− qPi (g) ≥ Ψ(k(g), β, µ)
[
2 + (3k(g)− 6)β + (k(g)2 − 5k(g) + 5)β2 − (1 + (k(g)− 2)β)β(k(g)− 1)

]
qPi (g′)− qPi (g) ≥ Ψ(k(g), β, µ)[2 + (2k(g)− 5)β − (2k(g)− 3)β2] ≥ 0,

where the last inequality holds strictly if β < 1.

(ii) Now suppose that K(g′)  K(g). Let πi be the Nash equilibrium payoff of agent i in

an auxiliary game among the agents that are active in g′ when they have the same marginal

cost as in the network g. By negative externalities, πi > πi(g). From step (i), we know that

πi(g
′) > πi.

Property 4. Minority economies to scale:

Let g = gT ∪ gS , where T ∩ S = ∅, T ∪ S  N , and s ≤ (n − 1)/2 < t. We show that if

S ⊆ K(g), then πi(g
′) > πi(g) where g′ = gT ∪ gS∪{j} for i ∈ S, j ∈ N\{S ∪ T}.

(i) Suppose that K(g) = K(g′). Notice that ni(g
′) − ni(g) = 1 and

∑
j∈K(g)\{i} nj(g

′) −
nj(g) = 2s− 1.

(i.1) In the quantity competition version of the model, we have
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qQi (g′)− qQi (g) =
1

2 + (k(g)− 1)β

µ

2− β
[(2 + (k(g)− 2)β)− (2s− 1)β] > 0,

where the inequality comes from s < k(g)
2 .

(i.2) In the price competition version of the model, we have

qPi (g′)−qPi (g) = Ψ(k(g), β, µ)
[
(2 + (3k(g)− 6)β + (k(g)2 − 5k(g) + 5)β2 − (1 + (k(g)− 2)β)β(2s− 1)

]
Since s < k(g)/2 and qPi (g′)− qPi (g) is decreasing in s, we have

qPi (g′)− qPi (g) > Ψ(k(g), β, µ)
[
2 + (3k(g)− 6)β + (k(g)2 − 5k(g) + 5)β2 − (1 + (k(g)− 2)β)β(k(g)− 1)

]
qPi (g′)− qPi (g) > Ψ(k(g), β, µ)[2 + (2k(g)− 5)β − (2k(g)− 3)β2] ≥ 0,

(ii) Suppose that K(g) ⊇ K(g′). Then K(g) = N and K(g′) = T ∪ S ∪ {j}. Let πi be

the Nash equilibrium payoff of agent i in an auxiliary game among the agents that are active

in g′ when they have the same marginal cost as in the network g. By negative externalities,

πi > πi(g). From step (i), we know that πi(g
′) > πi.

(iii) Suppose that K(g) ⊆ K(g′). Then K(g) = S ∪ T and K(g′) = T ∪ S ∪ {j}. Consider

the auxiliary game Γ(ε) among the agents in T ∪ S ∪ {j} where the marginal costs of agents

are given by ck = ck(g) for all k ∈ S ∪ T and cj(ε) < cj(g) is such that all agents produce

positive amounts and agent j produces ε at the Nash equilibirum of Γ. Note by πk(ε) the Nash

equilibrium payoff of agent k in Γ(ε). By (i) and by negative externalities, we then have πi(g
′) >

πi(ε). This, for ε approaching 0, we have πi(g
′) > πi(ε) ' πi(g).

Property 5. Welfare improving switch:

We show that
∑

i∈N πi(g
′) >

∑
i∈N πi(g) if g′ ∈ S(g, i, j), ni(g) ≥ nj(g) and j ∈ K(g)∩K(g′).

(i) We first show that K(g) = K(g′).

Let k+
l (g) = #{k ∈ N : nk(g) ≥ nl(g)}. In the quantity competition model, the participation

constraint of an agent l in the network g is:

qQl (g) > 0⇔ nl(g) >
β
∑

k∈N :nk(g)≥nl(g) nk(g)− α−λ
µ (2− β)

2 +
[
k+
l (g)− 2

]
β

In the price competition model, the participation constraint of an agent l in the network g is:

qPl (g) > 0⇔ nl(g) >

(
1 + (k+

l (g)− 2)β
)
β
∑

k∈N :nk(g)≥nl(g) nk(g)− α−λ
µ (1− β)

(2 + (3k+
l (g)− 6)β + (k+

l (g)2 − 5k+
l (g) + 5)β2

In the two models, the participation constraint of an agent l in a network g depends on

the number of agents with at least the same number of links k+
l (g) and the sum of their links∑

k∈N :nk(g)≥nl(g) nk(g). Let l ∈ E(g). We have k+
l (g) = k+

l (g′) and
∑

k∈N :nk(g)≥nl(g) nk(g) =
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∑
k∈N :nk(g)≥nl(g) nk(g

′) so that l ∈ E(g′). Thus, K(g′) ⊆ K(g). If j ∈ Km(g), then the as-

sumption j ∈ K(g′) implies K(g) ⊆ K(g′) since nj(g
′) < nk(g

′) for all k ∈ K(g)\{j}. Fi-

nally, if j ∈ K+(g), let l ∈ Km(g). We have k+
l (g) = k+

l (g′) and
∑

k∈N :nk(g)≥nl(g) nk(g) =∑
k∈N :nk(g)≥nl(g) nk(g

′) so that l ∈ K(g′), implying K(g) ⊆ K(g′) since nl(g
′) ≤ nk(g

′) for all

k ∈ K(g). We have K(g) ⊆ K(g′) and K(g′) ⊆ K(g) so that K(g) = K(g′).

(ii) We then show that
∑

i∈N πi(g
′) >

∑
i∈N πi(g).

Since K(g) = K(g′), we have qi(g
′) − qi(g) = qj(g) − qj(g′) = x > 0 and ql(g) = ql(g

′) for

l 6= i, j in the two models. It follows that some units of production are transfered from agent

j to agent i when moving from g to g′. We have
∑

l∈K(g) cl(g)ql(g) −
∑

l∈K(g′) cl(g
′)ql(g

′) =

ci(g)qi(g) + cj(g)qj(g)− ci(g′)qi(g′)− cj(g′)qj(g′) = µ(qi(g
′)− qj(g′)) +x(cj(g)− ci(g)) > 0. The

total output remains unchanged but the total production costs are reduced.

Property 6. Switch externality:

We show that πl(g
′) = πl(g) for g′ ∈ S(g, i, j) if i, j ∈ K+(g), ni(g) ≥ nj(g) and l 6= i, j.

This results has already been established in P5 where we have shown that K(g) = K(g′),

qi(g
′)− qi(g) = qj(g)− qj(g′) and qk(g) = qk(g

′) for all k 6= i, j. �

�

Proof of Lemma 2.

Property 3. Strong degree monotonicity:

Let g ∈ G. Let S ⊆ Kl(g) ⊆ K(g). For all i ∈ S, let ni(g
′) = ni(g) + 1 and for all i /∈ S, let

ni(g
′) = ni(g). We show that πi(g

′) > πi(g) for i ∈ S.

By negative externalities, we have K(g′) ⊆ K(g).

(i) If K(g) = K(g′), then pi(g
′) = 1 − (k(g) − 1)/(s +

∑
j∈K(g)(vi(g) + β)/vj(g)) > pi(g) =

1− (k(g)− 1)/(s+
∑

j∈K(g) vi(g)/vj(g)).

(ii) If K(g′)  K(g), then let πi be the unique Nash equilibrium payoff of agent i in a game

among the agents in K(g′) who have the same valuation as in the network g. By negative

externalities, πi > πi(g) for all i ∈ K(g′). From step (i), we know that πi(g
′) > πi.

Property 4. Minority economies to scale:

Let g = gT ∪ gS , where T ∩ S = ∅, T ∪ S  N , and s ≤ (n − 1)/2 < t. We show that if

S ⊆ K(g), then πi(g
T ∪ gS∪{j}) > πi(g

T ∪ gS∪{j}) for i ∈ S, j ∈ N\{S ∪ T}.

(i) Suppose that K(g) = N . Then, for i ∈ S, we have

πi(g) = (v + (s− 1)β)

[
1− n− 1

s+ (v + (s− 1)β)(y + 1
v )

]2

,
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where y = t
v+(t−1)β + n−t−s−1

v .

(i.a) If K(g′) = N . Then

πi(g
′) = (v + sβ)

[
1− n− 1

s+ 1 + (v + sβ)y

]2

.

We then have that πi(g
′) > πi(g) when yv + 1 > s.

Since K(g) = N , we have

v ≥ n− 2
s

v+(n−1)β + y
>
n− 2
s
v + y

;

yv > n− 2− s.

This implies that yv + 1 > s whenever n− s− 1 > s, which is satisfied when s ≤ n−1
2 .

(i.b) If K(g′) = T ∪S ∪{j}  N , then let πi be the unique Nash equilibrium payoff of agent

i in a game among the agents in K(g′) who have the same valuation as in the network g. By

negative externalities, πi > πi(g) for all i ∈ K(g′). From step (i.a), we know that πi(g
′) > πi.

(ii) Suppose that K(g) = T ∪ S. Then, for i ∈ S we have:

πi(g) = (v + (s− 1)β)

1− t+ s

(v + (s− 1)β)
(

s
v+(s−1)β + 1

v + t
v+(t−1)β

)
2

.

where v = t+s−1
t

v+(t−1)β
+ s
v+(s−1)β

> v. We also have that

πi(g
′) = (v + sβ)

1− t+ s

(v + sβ)
(
s+1
v+sβ + t

v+(t−1)β

)
2

.

Hence, πi(g
′) > πi(g) if v < (t− 1)2β + stβ.

Since j /∈ K(g), we have v < (t− 1)2β < (t− 1)2β + stβ.

Property 5. Welfare improving switch:

We show that πl(g
′) ≥ πl(g) for g′ ∈ S(g, i, j) if i, j ∈ K+(g), ni(g) ≥ nj(g) and l 6= j.

(i) We first show that K(g) ⊆ K(g′).

Let k+
l (g) = #{k ∈ N : nk(g) ≥ nl(g)}. The participation constraint of an agent l in the

network g is

el(g) > 0⇐⇒ vl(g) >
k+l (g)−1∑

k∈N :nk(g)≥nl(g)
1/vk(g) . Let i ∈ Km(g). We have vi(g) >

k+i (g)−1∑
k∈N :nk(g)≥ni(g)

1/vk(g) >

k+i (g)−1∑
k∈N :nk(g)≥ni(g)

1/vk(g′) , where the first inequality holds since agent i participates in the contest

under the network g and the second holds since the vector of the valuation of the agents with

more links than i under g′ is a mean preserving spread on the vector of the valuation of these

agents under g. We thus have i ∈ K(g′), implying K(g) ⊆ K(g′).
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(ii) πl(g) < πl(g
′) since (1− (k(g)−1)∑

k∈K(g) vl(g)/vk(g)) < (1− (k(g)−1)∑
k∈K(g) vl(g)/vk(g′)) < (1− (k(g′)−1)∑

k∈K(g′) vl(g)/vk(g′))

where the second inequality holds by application of Lemma 1 in Grandjean et al. (2014).

Property 6. Switch externality:

We show that
∑

i∈N πi(g
′) >

∑
i∈N πi(g) if g′ ∈ S(g, i, j), ni(g) ≥ nj(g) and j ∈ K(g′). In

Grandjean et al. (2014), it is shown that
∑

i∈N πi(g) =
∑
vi(g)− (k(g)− 1)hk(g)(g)−

∑
e∗i (g)

and that
∑
e∗i (g) = k(g)−1

k(g) hk(g)(g).

(i) K(g) ⊆ K(g′).

Let l ∈ Km(g). We show that l ∈ K(g′). If l ∈ {i, j}, the result holds by assumption since

i, j ∈ K(g′). Suppose l 6= i, j, we have vl(g) = vl(g
′) > k(g)−1∑

k∈K(g) 1/vk(g) >
k(g)−1∑

k∈K(g) 1/vk(g′) , where

the first inequality is the participation constraint of l in g, and the second holds since the vector

of the valuation of the agents with more links than l under g′ is a mean preserving spread on the

vector of the valuation of these agents under g. We thus have l ∈ K(g′), implying K(g) ⊆ K(g′).

(ii)
∑

i∈N e
∗
i (g) >

∑
i∈N e

∗
i (g
′)

(ii.a) If K(g) = K(g′), we have hk(g)(g) > hk(g′)(g
′), leading to

∑
i∈N e

∗
i (g) >

∑
i∈N e

∗
i (g
′).

(ii.b) If K(g)  K(g′), the participation constraints of agent j ∈ K(g′)\K(g) in g and g′ are∑
i∈N e

∗
i (g) ≥ vj(g) and vj(g

′) >
∑

i∈N e
∗
i (g
′). We thus have

∑
i∈N e

∗
i (g) >

∑
i∈N e

∗
i (g
′) since

vj(g) = vj(g
′).

(iii) W (g′) > W (g)

(iii.a) If K(g) = K(g′), then this holds by (ii).

(iii.b) If K(g) ⊆ K(g′), then

W (g′)−W (g) =
∑

j∈K(g′)\K(g) vj(g
′)− (k(g′) + 1)

∑
i∈N e

∗
i (g
′) + (k(g) + 1)

∑
i∈N e

∗
i (g).

=
∑

j∈K(g′)\K(g) vj(g
′)− (k(g′)−k(g))

∑
i∈N e

∗
i (g
′) + (k(g) + 1)(

∑
i∈N e

∗
i (g)−∑

i∈N e
∗
i (g
′))

The participation constraint of j ∈ K(g′)\K(g) in g′ is vj(g
′) >

∑
i∈N e

∗
i (g
′). Adding these

inequalities over all j ∈ K(g′)\K(g), we obtain
∑

j∈K(g′)\K(g) vj(g
′)−(k(g′)−k(g))

∑
i∈N e

∗
i (g
′) >

0. From (ii), we have
∑

i∈N e
∗
i (g) >

∑
i∈N e

∗
i (g
′). We thus find that W (g′) − W (g) can be

expressed as the sum of two positive numbers.

�

Proof of Lemma 3

Property 3. Strong degree monotonicity: πi(g) < πi(g
′) for i ∈ S ⊆ Kl(g) ⊆ K(g)

where g′ is such that nj(g
′) = nj(g) + 1 for all j ∈ S and nj(g

′) = nj(g) for all j ∈ N \ S.

Note that
∑

k∈N nk(g
′) =

∑
k∈N nk(g

′) + s

πi(g
′)− πi(g) =

ni(g
′)

δ +
∑

k∈N nk(g
′)
− ni(g)

δ +
∑

k∈N nk(g)
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πi(g
′)− πi(g) =

ni(g) + 1

δ +
∑

k∈N nk(g) + s
− ni(g)

δ +
∑

k∈N nk(g)

πi(g
′)− πi(g) =

δ +
∑

k∈N nk(g)− ni(g)s

(δ +
∑

k∈N nk(g) + s)(δ +
∑

k∈N nk(g))
> 0

The latter is obtained by noting that
∑

k∈N nk(g) ≥
∑

k∈S nk(g) = ni(g)s.

Property 4. Minority economies to scale: Let g = gS ∪ gT , T ∩ S = ∅ and s ≥ n/2.

Let i ∈ T and j /∈ {S ∪ T}. We show that πi(g) < πi(g
′) where g′ = gS ∪ gT∪{j}.

πi(g
′)− πi(g) =

ni(g
′)

δ +
∑

k∈N nk(g
′)
− ni(g)

δ +
∑

k∈N nk(g)

πi(g
′)− πi(g) =

ni(g) + 1

δ +
∑

k∈N nk(g) + 2t
− ni(g)

δ +
∑

k∈N nk(g)

πi(g
′)− πi(g) =

δ +
∑

k∈N nk(g)− ni(g)2t

(δ +
∑

k∈N nk(g) + 2t)(δ +
∑

k∈N nk(g))
> 0

since
∑

k∈N nk(g) > ni(g)2t.

Property 5. Welfare neutral switch:

Let g ∈ G and g′ ∈ S(g, i, j). We show that
∑

k∈N πk(g
′) =

∑
k∈N πk(g). Notice that

πk(g
′) = πk(g) for all k 6= i, j. It follows that

∑
k∈N πk(g

′)−πk(g) = πi(g
′)−πi(g)+πj(g

′)−πj(g).

Since
∑

k∈N nk(g
′) =

∑
k∈N nk(g), we have:∑

k∈N
(πk(g

′)− πk(g)) =
ni(g

′)− ni(g) + nj(g
′)− nj(g)

δ +
∑

k∈N nk(g
′)

= 0.

Property 6. Switch externality: Let g ∈ G and g′ ∈ S(g, i, j), we have πk(g
′) = πk(g)

for all k 6= i, j.

�

Appendix B. Proofs of Section 5

In the proof of Propositions 2 and 3, we note by S1(g) = {i ∈ N | πi(g) ≥ max{Π̂,Π}} the

set of agents whose payoff in the network g is greater than the maximal per capita payoff in a

2-clique network, and by S2(g) = {i ∈ N | πi(g) < max{Π̂,Π}} the remaining agents. We first

introduce some lemmas.
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1. Let Γ ∈ G be such that P2 and P3 are satisfied. Let g ∈ G. We have Πi(g) ≤ Πi(g
N(g)) for

i ∈ N−(g).

Let g′ be such that nj(g
′) ∈ {ni(g), ni(g) + 1} and nk(g

′) = ni(g)for all k ∈ N(g)\{j}. We

have Πi(g) ≤ Πi(g
′) ≤ Πi(g

N(g)), where the first inequality holds by P2 and the second by P3.

2. Let Γ ∈ G be such that P2 and P3 are satisfied. Let Π̂ > Π. Let g ∈ G be such that s1(g) ≥ ŝ.
Then

(i) ni(g) ≥ s1(g)− 1 for all i ∈ S1(g)

(ii) ni(g) ≥ s1(g) for all i ∈ S1(g) if s1(g) > ŝ or k(g) > s1(g).

(i) By contradiction, suppose that ni(g) < s1(g) − 1 for some i ∈ S1(g). Without loss of

generality, suppose i ∈ arg minj∈S1(g) nj(g). Let g′ be such that nk(g
′) ∈ {ni(g), ni(g) + 1}

for k ∈ S1(g), nl(g
′) = ni(g) for all l ∈ S1(g)\{k} and nl(g

′) = 0 for all l ∈ S2(g). We have

Πi(g) ≤ Πi(g
′) < Πi(g

S1(g)) ≤ Π̂, where the first inequality holds by P2 and the second by P3.

This contradicts i ∈ S1(g). Thus, nj(g) ≥ s1(g)− 1 for all j ∈ S1(g).

(ii) By contradiction, suppose that ni(g) < s1(g) for some i ∈ S1(g), which by (i) implies

ni(g) = s1(g) − 1, and i ∈ arg minj∈S1(g) ni(g). We have Πi(g) ≤ Πi(g
S1(g)) ≤ Π̂. The first

inequality holds by P2, strictly if k(g) > s1(g), while the second inequality holds by definition

of Π̂, strictly if s1(g) > ŝ. This contradicts i ∈ S1(g). Thus, nj(g) ≥ s1(g) for all j ∈ S1(g).

Proof of Proposition 2.

Let G = {gS | s = ŝ}.

(⇐=) Suppose Π̂ > Π. We show that G satisfies internal and external stability.

Internal Stability

Let g, g′ ∈ G. By contradiction, suppose g � g′. Let g0, g1, ..., gK be a sequence of networks

going from g0 = g to gK = g′ such that for each t = 1, 2, ...,K, coalition St−1 can enforce the

network gt over gt−1. Since g′ 6= g ∪ h for some h ⊆ gN\N(g), agents from N(g) modify the

current network at some point in the sequence. Let gk be the first network in the sequence

where N(g) ∩ Sk 6= ∅. We have Πi(gK) ≤ Πi(gk) = Π̂ for all i ∈ N(g) ∩ Sk since K(gk) = K(g),

contradicting g � g′.

External Stability

Let g′ /∈ G. Let g0 = g′. In g0 and in the successive networks, let the agents who are not

participating in the current network delete their links. Let ĝ be the network reached this way.

Formally, for all k ≥ 0, let gk+1 = gk−N(g)\K(g)
. Let ĝ = gK where gK satisfies gK = gK+1. By

construction, N(ĝ) = K(ĝ). If ĝ ∈ G, the proof stops here. Otherwise, let g′′ = ĝ and go to the

initial step.

Initial step: If n0(g′′) ≤ n− ŝ, go to step (i); if n− ŝ < n0(g′′) ≤ n− s̃, go to step (ii) ; if

n− s̃+ 1 ≤ n0(g′′) ≤ ŝ, go to step (iii) and if n0(g′′) ≥ ŝ go to step (iv).
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Step (i): n0(g′′) ≤ n− ŝ

(i.a) If s1(g′′) < ŝ, then let the agents in T ⊆ S2(g′′) ∩ N(g′′) with t = n − ŝ + 1 − n0(g′′)

delete their links, leading to g′′′ = g′′−T . We have n0(g′′′) ≥ n− ŝ+ 1.21 Let g′′ = g′′′, and go to

the initial step.

(i.b) If s1(g′′) ≥ ŝ, then {i} ↔g′′ S2(g′′) for each i ∈ S1(g′′) by Lemma 2 since g′′ /∈ G. An

agent from S1(g′′) has at least one link with an agent in S2(g′′). Let g = g′′−S2(g′′).

(i.b.1) If s1(g) = ŝ and gS1(g) * g, then in g′′ let the agents from S2(g′′) delete their links

leading to the network g. In g, let the agents in S2(g) delete their links to reach the network

g′′′ = g−S2(g). Notice that ni(g
′′′) < ŝ− 1 for i ∈ arg minj∈S1(g) nj(g

′′′) since N(g′′′) ⊆ S1(g) and

gS1(g) * g. It follows that i ∈ S2(g′′′). Let agent i delete his links to reach g′′′′ = g′′′−i. Each

agent who deviates in a network in the sequence from g′′ to g′′′′ cuts all his links. There are at

least n − ŝ + 1 unconnected agents in the network reached. Let g′′ = g′′′′ and go to the initial

step.

(i.b.2) If s1(g) = ŝ and gS1(g) ⊆ g, then in g′′ let the agents from S2(g′′) delete their links

but the link i1i2 where i1 ∈ S1(g) and i2 ∈ S2(g′′)∩N(g′′) leading to the network g′′′ = g+ i1i2.

Then, let the agents from S2(g)\{i2} delete their links in order to reach the network g′′′′ =

gS1(g) + i1i2. Notice that S1(g′′′′) = {i1}. Then, let i2 and j ∈ S1(g)\{i1} delete their links.

The network reached this way is g′′′′′ = gS1(g)\{j}. Notice that S1(g′′′) ⊆ S1(g) ∪ {i2} so that

S2(g)\{i2} ⊆ S2(g′′′)\{i2}. Thus, the agents deleting a link in g′′′ have a payoff smaller than Π̂.

Each agent who deviates in a network in the sequence from g′′ to g′′′′′ cuts all his links. There

are n − ŝ + 1 unconnected agents in the network reached. Let g′′ = g′′′′′ and go to the initial

step.

(i.b.3) If s1(g) 6= ŝ, then in g′′ let the agents from S2(g′′) delete their links leading to the

network g. Let g′′ = g and go to the initial step.

Step (ii): n− ŝ < n0(g′′) ≤ n− s̃

Let i ∈ N−(g′′). We have i ∈ S2(g′′) since Πi(g
′′) ≤ Πi(g

N(g′′)) < Π̂ where the first inequality

holds by Lemma 1, and the second by definition of Π̂. Let agent i delete all his links leading to

g′′′ = g′′−i. Let g′′ = g′′′ and go to the initial step.

Step (iii): n− s̃+ 1 ≤ n0(g′′) < ŝ

Let the agents from N0(g′′) form a component where agent k ∈ N0(g′′) has either d − 1

or d links while each agent in N0(g′′)\{k} has d links, where d =min{nl(g′′), n0(g′′) − 1} for

l ∈ N−(g′′). Let g′′′ be the network reached this way.

(ii.a) If min{nl(g′′), n0(g′′)−1} = nl(g
′′), then Πl(g

′′′) < Πl(g
N\{k}) ≤ Π̂. The first inequality

holds by Lemma 1, and the second by definition of Π̂. In g′′′, let {l} ∪N0(g′′) delete their links

leading to g′′′′ = g′′−l. Thus, n0(g′′′′) ≥ n0(g′′) + 1. Then, let g′′ = g′′′′ and go to the initial step.

21We have n0(g′′′) = n− ŝ+ 1 if Ni(g
′′) * T for all i ∈ N(g′′)\T . Otherwise, n0(g′′′) > n− ŝ+ 1.
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(ii.b) If min{nl(g′′), n0(g′′) − 1} = n0(g′′) − 1, we have Πi(g
′′′) ≤ Πi(g̃

N(g′′)) ≤ Π < Π̂ for

i ∈ N−(g′′), where the first inequality holds by P2 and P3. In g′′′, let {i} ∪N0(g′′) delete their

links leading to g′′′′ = g′′−i. Thus, n0(g′′′′) ≥ n0(g′′) + 1. Let g′′ = g′′′′ and go to the initial step.

Step (iv): n0(g′′) ≥ ŝ

Let g∗ = g′′. Let D be the set of agents who deviate in a network in the sequence from ĝ to

g∗. By construction, d ≤ ŝ. In g∗, let the agents from D and ŝ− d agents from N0(g′′)\D form

a completely connected component in order to reach g′′′. In g′′′, the agents with less than ŝ− 1

links do not participate. They delete their links, leading to the network g′′′′ ∈ G.

End: We have constructed a path from the network g′ to some network in the set G satisfying

indirect dominance. The set of unconnected agents is strictly larger after implementing the

modifications of steps (i), (ii), or (iii). As a consequence, the algorithm reaches step (iv) with

probability 1 if it passes through the initial step. If an agent modifies the network at some point

in the sequence, he is either deleting links in a network in which he is not participating, or he

has a payoff strictly smaller than Π̂ in the current network and is looking forward to get Π̂ in

the end network.

(⇒) Suppose Π̂ ≤ Π. We show that G does not satisfy external stability. Take g′ = g̃S such

that #S = s. By contradiction, suppose g′ � g for some g ∈ G. Let g0, g1, ..., gK be a sequence

of networks going from g0 = g′ to gK = g such that for each t = 1, 2, ...,K, coalition St−1 can

enforce the network gt over gt−1. Since g′ * g, agents from S modify the current network at

some point in the sequence. Let gk be the first network in the sequence where S ∩ Sk 6= ∅. We

have Πi(gK) = Π̂ ≤ Π ≤ Πi(gk) for all i ∈ N(g)∩Sk where the last inequality holds by negative

externalities, contradicting g′ � g.

�

3. Let Γ ∈ G be such that P2 and P3 are satisfied. Let g ∈ G. Let i ∈ N−(g). If ni(g) ≥
n0(g) − 1, let g′ = g ∪ gN0(g). If ni(g) < n0(g) − 1, let g′ = g ∪ h where h ⊆ gN

0(g) such that

nj(g
′) ∈ {ni(g)−1, ni(g)} for some j ∈ N0(g) while nk(g

′) = ni(g) for all k ∈ N0(g)\{j}. Then

Πi(g
′) ≤ Π, with strict inequality if g′ 6= g̃S for s = s.

(i) If ni(g) ≥ n0(g)− 1, then Πi(g
′) ≤ Πi(g

′′) ≤ Πi(g̃
N(g)) ≤ Π, where g′′ = h′′ ∪ gN0(g), and

h′′ ⊆ gN(g) such that nj(g
′′) ∈ {ni(g) + 1, ni(g)} for some j ∈ N(g) while nk(g

′′) = ni(g) for all

k ∈ N(g)\{j}. The first inequality holds by P2 and the second by P3. If n(g) 6= s, the last

inequality holds strictly, while if n(g) = s and g 6= gN(g), then ni(g
′) < n(g)− 1 and the second

inequality holds strictly.

(ii) If ni(g) < n0(g)−1, then Πi(g
′) ≤ Πi(g

′′) < Πi(g
N\{k}) ≤ Π for k 6= i, where g′′ = h′′∪h,

and h′′ ⊆ gN(g) such that nj(g
′′) ∈ {ni(g) + 1, ni(g)} for some j ∈ N(g) while nk(g

′′) = ni(g) for

all k ∈ N(g)\{j}. The first inequality holds by P2 and the second by P2 and P3.

34



4. Let Γ ∈ G be such that P2, P3 and P4 are satisfied. Let g = gS∪h where s = s and h  gN\S.

Then Πi(g) < Π for i ∈ N−(g).

Let h′ ⊆ gN(g)\S be such that nk(h
′) ∈ {ni(g), ni(g) + 1} for some k ∈ N(g)\S and nj(h

′) =

ni(g) for all j ∈ N(g)\(S ∪ k). Then Πi(g) ≤ Πi(g
S ∪ h′) ≤ Πi(g

S ∪ gN(g)\S) ≤ Πi(g
S ∪ gN\S),

where the first inequality holds by P2, the second by P3 and the third by P4. Since h  gN\S ,

at least one inequality holds strictly.

Proof of Proposition 3

Let G = {g ⊆ gN | g = g̃S such that #S = s}.

(⇐=) Suppose Π > Π̂. We show that G satisfies internal and external stability.

Internal Stability

Let g, g′ ∈ G. Let g = g̃S with s = s. By contradiction, suppose g � g′. Let g0, g1, ..., gK be

a sequence of networks going from g0 = g to gK = g′ such that for each t = 1, 2, ...,K, coalition

St−1 can enforce the network gt over gt−1. Since Ni(g
′) * Ni(g) for some i ∈ S, agents from S

modify the network at some point in the sequence. Let gk be the first network in the sequence

where S∩Sk 6= ∅. We have gk = gS∪h where h ⊆ gN\S . Thus, Πi(gK) ≤ Πi(gk) for all i ∈ S∩Sk
by P2, contradicting g � g′.

External Stability

Let g′ /∈ G. We construct a sequence of networks going from g0 = g′ to gK = g ∈ G

such that for each t = 1, 2, ...,K, coalition St−1 can enforce the network gt over gt−1 and

Πi(gT ) > Πi(gt−1) for all i ∈ St−1. Let γ(g) ∈ G be the unique network reached from a given

network g by successively deleting all the links of the agents with a payoff strictly smaller than

Π. Formally, let g0 = g and for all k ≥ 0, let gk+1 = gk−S2(gk)
. We have γ(g) = gK where gK

satisfies gK = gK+1. If s1(γ(g′)) ≤ n − s go to the step (i), if n − s < s1(γ(g′)) ≤ s go to the

step (ii), if s1(γ(g′)) = s go to the step (iii), (iv) or (v), and if s1(γ(g′)) > s go to the step (vi).

(i) s1(γ(g′)) ≤ n− s. Let g0 = g′. For all k ≥ 0, let gk+1 = gk−S2(gk)
. Let L be the smallest

integer such that s1(gL+1) ≤ n− s. For k = 0, 1, ..., L− 1, let the agents in S2(gk) successively

delete their links, leading to the network gL. Let the agents from T ⊆ S2(gL+1)\S2(gL), where

t = s− s2(gL) delete their links in gL. Then let the agents from T and S2(gL) form a strongly

connected component, leading to the network g′′ = gS ∪ g′−S where S = T ∪S2(gL). Let g′ = g′′

and go to step (iii).

(ii) n− s < s1(γ(g′)) < s. For k = 0, 1, 2, ..., let the agents in S2(gk) successively delete their

links, leading to the network g′′ = γ(g′). Then add links between agents in N0(g′′) in order

to build the network g′′′ where nj(g
′′′) ∈ {d − 1, d} for j ∈ N0(g′′) while nk(g

′′′) = d for all

k ∈ N0(g′′)\{j}, where d = min{n0(g′′) − 1, nl(g
′′)} for l ∈ N−(g′′). We have Πl(g

′′′) < Π by
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Lemma 3. Since nk(g
′′′) ≤ nl(g′′′) for all k ∈ N0(g′′), we have {i}∪N0(g′′) ⊆ S2(g′′′). Let agent

i and those in N0(g′′) delete their links to reach g′′′′ = g′′−i. Let g′ = g′′′′. If s1(γ(g′)) ≤ n − s,
go to step (i) while if n− s < s1(γ(g′)) < s, repeat step (ii).

(iii) s1(γ(g′)) = s, g′ = gS ∪ h where s = s and h ⊆ gN\S . In g′ and in the successive

networks, the agent with fewer links delete his links until gS is reached. Let g0 = g′. Let

gk+1 = gk−i where i ∈ N−(gk)\S. We have Πi(gk) < Π by Lemma 4. Let gL be such that

gL = gL+1. By construction, gL = gS . Then, the agents in N\S add each link between them

leading to the end network g̃S , and go to the end step (vii).

(iv) s1(γ(g′)) = s, g′ = gS∪h where s = s and h * gN\S . Then i1i2 ∈ g′ for i1 ∈ S, i2 ∈ N\S.

In g′ and in the successive networks, the agents with a payoff smaller than Π delete their links

but the link i1i2 in order to reach g′′ = gS + i1i2. Let g0 = g′. Let gk+1 = gk−S2(gk)
+ i1i2. Let L

be such that gL+1 = gL. By construction, gL = gS + i1i2, and each agent cutting a link in the

path from g′ to gL has a payoff smaller than Π. In g′′ = gS+i1i2, agents from N\S add each link

between them leading to g′′′ = g̃S + i1i2. By negative externalities, we have N\{i1} ⊆ S2(g′′′).

Let the agents from N\S and those from T ⊆ S2(g′′′)\(N\S) where t = 2s−n delete their links,

and then add each link between them, leading to the network g′′′′ = g(N\S)∪T ∪ g′−(N\S)∪T . Let

g′ = g′′′′ and go to step (iii).

(v) s1(γ(g′)) = s and γ(g′) 6= gS . In g′ and in the successive networks, let the agents with

a payoff smaller than Π delete their links, leading to the formation of the network g′′ = γ(g′).

Notice that nl(g
′′) < s − 1 for l ∈ N−(g′′) since g′′ 6= gS and n(g′′) = s. Then, let the agents

from S2(g′′) add links between them in order to build the network g′′′ where nj(g
′′′) ∈ {d− 1, d}

for j ∈ S2(g′′) while nk(g
′′′) = d for all k ∈ S2(g′′)\{j}, where d = min{s2(g′′) − 1, nl(g

′′)}.
We have Πl(g

′′′) < Π by Lemma 3. Let g′ = g′′′. If s1(γ(g′)) ≤ n − s, go to step (i) while if

n− s < s1(γ(g′)) < s, go to step (ii).

(vi) s1(γ(g′)) > s. In g′ and in the successive networks, let the agents with a payoff smaller

than Π delete their links, leading to the formation of the network g′′ = γ(g′). Let l ∈ N−(g′′).

Then, let the agents from S2(g′′) add links between them in order to build the network g′′′

where nj(g
′′′) ∈ {d − 1, d} for j ∈ S2(g′′) while nk(g

′′′) = d for all k ∈ S2(g′′)\{j}, where

d = min{s2(g′′)− 1, nl(g
′′)}. We have Πl(g

′′′) < Π by Lemma 3.

(vi.a) If s1(γ(g′′′)) > s, in g′′′ and in the successive networks, let the agents with a payoff

smaller than Π delete their links, leading to the formation of the network γ(g′′′). Let g′ = γ(g′′′)

and repeat step (vi).

(vi.b) If s1(γ(g′′′)) = s and γ(g′′′) = gS for s = s, then lj ∈ g′′′ for j ∈ S.22 In g′′′ and in the

successive networks, let the agents with a payoff smaller than Π delete their links but the link

22Notice that nk(g′′) ≥ s − 1 for all k ∈ S since γ(g′′′) = gS and dl(g
′′) ≤ dj(g

′′) for all j ∈ S1(g′′) since

l ∈ N−(g′′). If we instead had Nj(g
′′) ∩ S = ∅, we would have nl(g

′′) ≤ n − s − 1 − n0(g′′). But then

Πl(g
′′) ≤ Πl(g

S ∪ gN\(S∪N
0(g′′))) ≤ πl(g̃

S) ≤ Π, where the first inequality holds by P2 and the second holds by

P4. This then contradicts i ∈ S1(g′′).
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lj, leading to the formation of the network g′′′′ = gS + ij. Then let g′ = g′′′′ and go to step (iv).

(vi.c) If s1(γ(g′′′)) = s and γ(g′′′) 6= gS for s = s. In g′′′ and in the successive networks,

let the agents with a payoff smaller than Π delete their links, leading to the formation of the

network γ(g′′′). Then let g′ = γ(g′′′) and go to step (v).

(vi.d) If s1(γ(g′′′)) < s, let g′ = g′′′ and go to step (i) if s1(γ(g′)) ≤ n − s, or to step (ii) if

n− s < s1(γ(g′)) < s.

(vii) End: The algorithm describes a sequence by which the network g′ is indirectly domi-

nated by the network g̃S ∈ G. With probability one, the algorithm reaches the end step (vii).

In step (ii), each deviating agent has a payoff smaller than Π at the network where he deviates,

and get Π in g̃S . In the others steps, the deviating agents have strictly less than Π when they

modify the network, and get Π in g̃S . We thus have g′ � g̃S .

(⇒) Suppose Π ≤ Π̂. We show that G does not satisfy external stability. Take g′ = gS such

that #S = s̃. By contradiction, suppose g′ � g for some g ∈ G. Let g0, g1, ..., gK be a sequence

of networks going from g0 = g′ to gK = g such that for each t = 1, 2, ...,K, coalition St−1 can

enforce the network gt over gt−1. Since g′ * g, agents from T modify the current network at

some point in the sequence. Let gk be the first network in the sequence where S ∩ Sk 6= ∅.
We have Πi(gK) = Π ≤ Π̂ = Πi(gk) for all i ∈ N(g) ∩ Sk where the last equality holds since

K(gk) = S, contradicting g′ � g.

�

Appendix C - Proofs of Section 6

Proof of Lemma 4.

Let g′ ∈ S∗(g, i, j). Let g′′ be such that ni(g
′′) = ni(g) for all i ∈ K(g) and nj(g

′′) = nj(g
′)

for all j ∈ N\K(g). We have W (g) = W (g′′) since K(g) = K(g′′) and ni(g) = ni(g
′′) for all

i ∈ K(g). By P5 and P6, we have W (g′) > W (g′′). Thus, W (g′) > W (g).

�

We now introduce some lemmas that are useful to establish the proofs of Proposition 5, 6,

and 7.

Lemma 5 shows that when two agents do not have the same number of links in a network,

there is another network where the agent with more links in the initial network looses one partner

in favour of the less connected agent.

Lemma 5. Let g ∈ G be such that ni(g) > nj(g). Then, ∃g′ ∈ G such that ni(g
′) = ni(g) − 1,

nj(g
′) = nj(g) + 1 and nk(g

′) = nk(g) for all k 6= i, j.

Proof. We have l ∈ N such that il ∈ g and jl /∈ g since ni(g) > nj(g). Let g′ = g − il + jl.
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As a corollary of Lemma 5, when the sum of the number of partners of a group of agents

is a multiple of the number of those agents in a given network, then there is another network

where they all have the same number of partners, while the number of partners of the remaining

agents remains unchanged.

Corollary 1. Let g ∈ G be such that
∑

i∈K ni(g) = ak for some a ∈ N and K ⊆ N . Then,

there is g′ ∈ G such that (i) ni(g
′) = a for all i ∈ K and (ii) ni(g

′) = ni(g) for all i ∈ N\K.

Lemma 6 shows that the neighborhood of strong agents is nested in a network g ∈ G.

Lemma 6. Let g ∈ G. Let i, j ∈ K+(g) with ni(g) ≥ nj(g). Then, Nj(g) ⊆ Ni(g).

Proof. Suppose on the contrary that Nj(g) * Ni(g). Then, there exists an agent k ∈ N such

that jk ∈ g but ik /∈ g. It follows that g + ik − jk ∈ S∗(g, i, j), contradicting g ∈ G.

As a Corollary of Lemma 6, an agent connected to a strong agent in a network g ∈ G is also

connected to each other agent with at least the same number of links.

Corollary 2. Let g ∈ G. Let ij ∈ g where i ∈ K+(g) and j ∈ N . Then, jk ∈ g for all k ∈ N
such that nk(g) ≥ ni(g)

Lemma 7 shows that if two participating agents i, j are connected to non-participating agents

in a network g ∈ G, then each pair of agents k, l where the degree of k is higher than that of i

and the degree of l is higher than that of j is connected in the network g.

Lemma 7. Let g ∈ G such that e1i1, e2i2 ∈ g for e1, e2 ∈ E(g), i1, i2 ∈ K(g). Then, ij ∈ g if

ni(g) ≥ ni1(g) and nj(g) ≥ ni2(g).

Proof. Suppose e1i1, e2i2 ∈ g but ij /∈ g for some i, j ∈ N such that ni(g) ≥ ni1(g) and

nj(g) ≥ ni2(g). Let g′ = g+ ij − e1i1 − e2i2. By Lemma 5, ∃g′′ such that nk(g
′′) = nk(g) for all

k ∈ K(g) and nk(g
′′) = nk(g

′) for all k ∈ E(g). It follows that g′′ ∈ C−(g), contradicting g ∈ G.

Proof of Proposition 5

Let g ∈ G1. By definition of G1, we have ni(g) = nj(g) for all i, j ∈ K(g). We show that

either K(g)>gK(g) and E(g)⊥gE(g) so that g is a core-periphery network, or #{ie ∈ g | i ∈
K(g) and e ∈ E(g)} ≤ 1 so that g is a quasi regular network. We discuss two cases: one where

the degree of each participating agent is greater than #K(g) − 1, and the other where it is

smaller.
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Case 1: ni(g) ≥ #K(g)− 1 for i ∈ K(g).

We show that in this case K(g)>gK(g). Suppose on the contrary that i1i2 /∈ g for some

i1, i2 ∈ K(g). Since ni1(g) = ni2(g) ≥ #K(g)− 1, we have i1e1,i2e2 ∈ g for some e1, e2 ∈ E(g).

Thus, g + i1i2 − i1e1 − i2e2 ∈ C−(g), contradicting g ∈ G.

Case 2: ni(g) < #K(g)− 1 for i ∈ K(g)

We show that in this case #{ie ∈ g | i ∈ K(g) and e ∈ E(g)} ≤ 1. On the contrary, suppose

i1e1, i2e2 ∈ g where i1, i2 ∈ K(g) and e1, e2 ∈ E(g). Since ni1(g) < #K(g)− 1, i1i3 /∈ g for some

i3 ∈ K(g). Let g′ = g + i1i3 − i1e1 − i2e2. By Corollary 1, ∃g′′ such that ni(g
′′) = ni(g) for all

i ∈ K(g) and ni(g) = ni(g
′) for all i ∈ E(g). We have g′′ ∈ C−(g), contradicting g ∈ G.

�

Proof of Proposition 6.

Let g ∈ G2. Let i1 ∈ K+(g) be such that ni1(g) ≤ ni(g) for all i ∈ K+(g). Let j1 ∈ Km(g)

be such that #(Nj1(g)∩K+(g)) ≤ #(Njk(g)∩K+(g)). We show that (i) g is a nested split graph

if Km(g)⊥gN\K+(g), (ii) K+(g)\{i1}>gK(g) if Km(g) ↔ Km(g), and (iii) K+(g)\{i1}>gN if

Km(g)↔ E(g).

(i) Suppose Km(g)⊥gN\K+(g). We thus have N\K+(g)⊥gN\K+(g) since E(g)⊥gE(g).

By Corollary 2, if k ∈ Ni(g) for some i ∈ N\K+(g), then k′ ∈ Ni(g) for all k′ such that

nk′(g) ≥ nk(g). Thus, g is a nested split graph.

(ii) Suppose j3j4 ∈ g with j3, j4 ∈ Km(g). We show that Km(g)>gK+(g)\{i1}.

(ii.2.a) Km(g)\{j1}>gK+(g)\{i1}

Suppose on the contrary that i2j2 /∈ g for some i2 ∈ K+(g)\{i1} and j2 ∈ Km(g)\{j1}.
Then i2j1 /∈ g by Corollary 2. Let g′ = g + i2j1 + i2j2 − i1i2 − j3j4. By Lemma 5, ∃g′′ such

that nk(g
′′) = nk(g

′) for all k ∈ K+(g), and nk(g
′′) = nk(g) for all k ∈ N\K+(g). We have

g′′ ∈ S(g, i2, i1), contradicting g ∈ G1.

(ii.2.b) {j1}>gK+(g)\{i1}.

Notice that i1x1 ∈ g for some x1 ∈ N\K+(g) since ni1(g) > nj(g) ≥ #K+(g)− 1. Suppose

on the contrary that i2j1 /∈ g for some i2 ∈ K+(g)\{i1}. Let g′ = g + i2j1 − i1j4. By Lemma 5,

there is g′′ such that nk(g
′′) = nk(g

′) for k ∈ K+(g) and nk(g
′′) = nk(g) for k ∈ N\K+(g). We

have g′′ ∈ S(g, i2, i1), contradicting g ∈ G1.

(iii) Suppose j4e4 ∈ g with j4 ∈ Km(g) and e4 ∈ E(g). We show that K+(g)\{i1}>gN .

We consider first the case where #Km(g) = 1 and then #Km(g) > 1.

Case (iii.1). Km(g) = {j4}.

We show that K(g)>gK(g) and E(g)>gK+(g)\{i1} for some i1 ∈ K+(g).

(iii.1.a) {j4}>gK+(g)\{i1}.
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Suppose on the contrary that i2j4 /∈ g for some i2 ∈ K+(g)\{i1}. Then i1j4 /∈ g by Corollary

2. It follows that {i1, i2}⊥gE(g). Indeed, if we had {i1, i2} ↔g E(g), say i1e1 ∈ g for some

e1 ∈ E(g), we would have g − i1e1 − j4e4 + i1j4 ∈ C−(g) a contradiction. Let g′ = g + i2j4 +

i2e4 − i1i2 − j4e4. We have g′ ∈ S(g, j1, i1), contradicting g ∈ G.

(iii.1.b) i1j4 ∈ g

Suppose on the contrary that i1j4 /∈ g. It follows that i1e1 ∈ g for some e1 ∈ E(g), as we

would otherwise have ni1(g) = #K+(g) − 1 < nj(g). Let g′ = g + i1j4 − i1e1 − j4e4. We have

g′ ∈ C−(g), contradicting g ∈ G.

(iii.1.c) E(g)>gK+(g)\{i1}

We have nj(g) ≥ #K+(g) + 1 since {j4}>gK+(g) and j4e4 ∈ g. Since ni1(g) > nj4(g), we

have i1e1 ∈ g for some e1 ∈ E(g), which in turn implies {e1}>gK+(g) by Corollary 2. We

thus have E(g)>gK+(g)\{i1}. To see this, suppose on the contrary that i2e2 /∈ g for some

i2 ∈ K+(g)\{i1}, e2 ∈ E(g). As ne1(g) > ne2(g), we have g + i2e2 − i1e1 ∈ S∗(g, i2, i1),

contradicting g ∈ G.

Case (iii.2). Suppose #Km(g) > 1.

(iii.2.a) Km(g)>gK+(g)\{i1}

The proof of this step is similar to the proof of step (ii.2) by replacing j3 by e4.

(iii.2.b) E(g)>gK+(g)\{i1}.

Suppose on the contrary that i2e2 /∈ g for some i2 ∈ K+(g)\{i1} and e2 ∈ E(g). We show in

cases (iii.2.b.1) and (iii.2.b.2) that it leads to a contradiction when {i1}>gKm(g) holds or not

respectively.

Case (iii.2.b.1) Suppose K+(g)>gKm(g). We then consider the cases where Km(g)>gKm(g)

holds or not.

Case (iii.2.b.1.1◦) Suppose Km(g)>gKm(g).

Notice that ni1(g) > nj4(g) ≥ #K(g) implies i1e1 ∈ g for some e1 ∈ E(g). Let g′ =

g + i2e2 − i1e1. If ne2(g′) ≤ ne1(g′), let g′′ = g′. Otherwise if ne2(g′) > ne1(g′), ∃g′′ such that

nk(g
′′) = nk(g

′) for k ∈ K+(g) and nk(g
′′) = nk(g) for k ∈ N\K+(g) by Lemma 5. We have

g′′ ∈ S∗(g, i2, i1), contradicting g ∈ G.

Case (iii.2.b.1.2◦) Suppose j2j3 /∈ g for some j2, j3 ∈ Km(g)

We have i1j2 ∈ g since K+(g)>gKm(g). Let g′ = g − i1j2 + i2e2 − j4e4 + j2j3. If ne2(g′) ≤
ne4(g′), let g′′ = g′. Otherwise if ne2(g′) > ne4(g′), ∃g′′ such that nk(g

′′) = nk(g
′) for all

k ∈ K+(g) and nk(g
′′) = nk(g) for all k ∈ N\K+(g) by Lemma 5. We have g′′ ∈ S∗(g, i2, i1),

contradicting g ∈ G.

Case (iii.2.b.2) Suppose i1j2 /∈ g for some j2 ∈ Km(g).
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(iii.2.b.2.1◦) {i1}⊥gE(g)

Suppose on the contrary that i1e1 ∈ g for some e1 ∈ E(g). Then, let g′ = g−i1e1−j4e4+i1j2.

By Lemma 5, ∃g′′ such that nk(g
′′) = nk(g

′) for all k ∈ E(g) and nk(g
′′) = nk(g) for all k ∈ K(g).

We have g′′ ∈ C−(g), contradicting g ∈ G.

(iii.2.b.2.2◦) i1 ↔ Km(g) and we do not have Km(g)>Km(g) since we would otherwise have

ni1(g) ≤ nj4(g).

(iii.2.b.2.3◦) E(g)>gK+(g)\{i1}
By assumption, we have j4e4 ∈ g. By contradiction, we have assumed i2e2 /∈ g. From

(iii.2.b.2.2◦), we have i1j2 ∈ g, and j3j5 /∈ g for some j2, j3, j5 ∈ Km(g) Let g′ = g − i1j2 +

i2e2− j4e4 + j3j5. If ne2(g′) ≤ ne4(g′), let g′′ = g′. Otherwise, if ne2(g′) > ne4(g′), ∃g′′ such that

nk(g
′′) = nk(g

′) for all k ∈ K+(g) and nk(g
′′) = nk(g) for all k ∈ N\K+(g) by Lemma 5. We

have g′′ ∈ S∗(g, i2, i1), contradicting g ∈ G.

�

Proof of Proposition 7.

Let g ∈ G3. Let K+(g) = {i1, i2, ..., ia} be such that ni1(g) ≥ ni2(g) ≥ ... ≥ nia(g). Let

Km(g) = {j1, j2, ..., jb} and let E(g) = {e1, e2, ..., ec} be such that ne1(g) ≥ ne2(g) ≥ ... ≥ nec(g).

Notice that iaia−1 /∈ g since g ∈ G3. We decompose the proof in four steps. We show that (i)

{ia}⊥gE(g), (ii) {ia}⊥gKm(g), (iii) Km(g)⊥g(Km(g)∪E(g)), and we conclude in step (iv) that

g is a nested split graph: Nec(g) ⊆ Nec−1(g) ⊆ .... ⊆ Ne1(g) ⊆ Nj1(g) = Nj2(g) = ... = Njb(g) ⊆
Nia(g) ⊆ Nia−1(g) ⊆ ... ⊆ Ni1(g).

(i) {ia}⊥gE(g)

Suppose on the contrary that iaek ∈ g for some ek ∈ E(g). We would then have ia−1ek ∈ g
by Corollary 2. Let g′ = g + iaia−1 − iaek − ia−1ek. We have g′ ∈ C−(g), contradicting g ∈ G.

(ii) {ia}⊥gKm(g)

Suppose on the contrary that iajx ∈ g for some jx ∈ Km(g). Then {jx}>gK+(g) by Corollary

2. Since nia(g) > njx(g) and {ia}⊥gE(g) by (i), we have iajy ∈ g and jxjz /∈ g where jy, jz ∈
Km(g), jy 6= jx. Let g′ = g+ iaia−1− iajx− iajy + jyjz. By Corollary 1, ∃g′′ such that ni(g

′′) =

ni(g
′) for all i ∈ N\Km(g), and ni(g

′′) = ni(g) for all i ∈ Km(g). We have g′′ ∈ S(g, ia−1, ia),

contradicting g ∈ G.

(iii) Km(g)⊥g(Km(g) ∪ E(g))

Suppose on the contrary that jx ∈ g for some j ∈ Km(g), x ∈ Km(g)∪E(g). Since nia(g) >

nj(g) and ia⊥gKm(g) ∪ E(g) by (i) and (ii), we have i, i′ ∈ K+(g) such that iai, iai
′ ∈ g and

ji, ji′ /∈ g. Suppose without loss of generality that ni(g) ≥ ni′(g). Let g′ = g−jx−iai′+iax+ji.

We have g′ ∈ S(g, i, i′), contradicting g ∈ G.
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(iv) Nkc(g) ⊆ Nkc−1(g) ⊆ .... ⊆ Nk1(g)  Nj1(g) = Nj2(g) = ... = Njb(g)  Nia(g) ⊆
Nia−1(g) ⊆ ... ⊆ Ni1(g)

We have shown that N\K+(g)⊥gN\K+(g). The result thus follows by Corollary 2 since

ni1(g) ≥ ni2(g) ≥ ... ≥ nia(g) > nj1(g) = ... = njb(g) > ne1(g) ≥ ne2(g) ≥ ... ≥ nec(g).

�
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