User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison

  • Open access
  • PDF
  • 762.81 K
  1. Alley R. B., Joughin I., Modeling Ice-Sheet Flow, 10.1126/science.1220530
  2. Baral Dambaru Raj, Hutter Kolumban, Greve Ralf, Asymptotic Theories of Large-Scale Motion, Temperature, and Moisture Distribution in Land-Based Polythermal Ice Sheets: A Critical Review and New Developments, 10.1115/1.3097296
  3. Blatter Heinz, Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients, 10.1017/s002214300001621x
  4. J. Geophys. Res., 114, F03008 (2009)
  5. Cornford Stephen L., Martin Daniel F., Graves Daniel T., Ranken Douglas F., Le Brocq Anne M., Gladstone Rupert M., Payne Antony J., Ng Esmond G., Lipscomb William H., Adaptive mesh, finite volume modeling of marine ice sheets, 10.1016/
  6. Docquier David, Perichon Laura, Pattyn Frank, Representing Grounding Line Dynamics in Numerical Ice Sheet Models: Recent Advances and Outlook, 10.1007/s10712-011-9133-3
  7. Drouet A. S., Docquier D., Durand G., Hindmarsh R., Pattyn F., Gagliardini O., Zwinger T., Grounding line transient response in marine ice sheet models, 10.5194/tc-7-395-2013
  8. Geophys. Res. Lett., 32, L04503 (2005)
  9. J. Geophys. Res., 114, F03009 (2009)
  10. Durand Gaël, Gagliardini Olivier, Zwinger Thomas, Meur Emmanuel Le, Hindmarsh Richard C.A., Full Stokes modeling of marine ice sheets: influence of the grid size, 10.3189/172756409789624283
  11. Favier L., Gagliardini O., Durand G., Zwinger T., A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf, 10.5194/tc-6-101-2012
  12. J. Geophys. Res., 112, F02027 (2007)
  13. Geophys. Res. Lett., 37, L14501 (2010)
  14. Gillet-Chaulet F., Gagliardini O., Seddik H., Nodet M., Durand G., Ritz C., Zwinger T., Greve R., Vaughan D. G., Greenland Ice Sheet contribution to sea-level rise from a new-generation ice-sheet model, 10.5194/tcd-6-2789-2012
  15. J. Geophys. Res., 115, F04014 (2010)
  16. Gladstone R. M., Payne A. J., Cornford S. L., Parameterising the grounding line in flow-line ice sheet models, 10.5194/tc-4-605-2010
  17. Earth Planet. Sci. Lett., 333–334, 191 (2012)
  18. J. Geophys. Res., 114, F04026 (2009)
  19. J. Geophys. Res, 117, F02037 (2012)
  20. J. Geophys. Res, 117, F02038 (2012)
  21. Gudmundsson G. H., Krug J., Durand G., Favier L., Gagliardini O., The stability of grounding lines on retrograde slopes, 10.5194/tc-6-1497-2012
  22. Hellmer Hartmut H., Kauker Frank, Timmermann Ralph, Determann Jürgen, Rae Jamie, Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current, 10.1038/nature11064
  23. J. Geophys. Res., 109, F01012 (2004)
  24. Hindmarsh R. C.A, The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion, 10.1098/rsta.2006.1797
  25. Hindmarsh Richard C.A., An observationally validated theory of viscous flow dynamics at the ice-shelf calving front, 10.3189/2012jog11j206
  26. Hindmarsh Richard C.A., Meur E. Le, Dynamical processes involved in the retreat of marine ice sheets, 10.3189/172756501781832269
  27. Hindmarsh R. C. A., Morland L. W., Boulton G. S., Hutter K., The unsteady plane flow of ice-sheets: A parabolic problem with two moving boundaries, 10.1080/03091928708208812
  28. Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets (1983)
  29. Climate Dyn., 5, 79 (1990)
  30. Huybrechts Philippe, Payne Tony, , The EISMINT benchmarks for testing ice-sheet models, 10.1017/s0260305500013197
  31. J. Geophys. Res., 117, F01022 (2012)
  32. Lythe Matthew B., Vaughan David G., BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, 10.1029/2000jb900449
  33. MacAyeal Douglas R., Large-scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica, 10.1029/jb094ib04p04071
  34. Dynamics of the West Antarctic ice sheet, 99 (1987)
  35. Geophys. Res. Lett., 37, L14502 (2010)
  36. Nowicki S.M.J., Wingham D.J., Conditions for a steady ice sheet–ice shelf junction, 10.1016/j.epsl.2007.10.018
  37. Pattyn Frank, A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes, 10.1029/2002jb002329
  38. J. Geophys. Res., 111, F02004 (2006)
  39. Pattyn F., Perichon L., Aschwanden A., Breuer B., de Smedt B., Gagliardini O., Gudmundsson G. H., Hindmarsh R. C. A., Hubbard A., Johnson J. V., Kleiner T., Konovalov Y., Martin C., Payne A. J., Pollard D., Price S., Rückamp M., Saito F., Souček O., Sugiyama S., Zwinger T., Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM), 10.5194/tc-2-95-2008
  40. Pattyn F., Schoof C., Perichon L., Hindmarsh R. C. A., Bueler E., de Fleurian B., Durand G., Gagliardini O., Gladstone R., Goldberg D., Gudmundsson G. H., Huybrechts P., Lee V., Nick F. M., Payne A. J., Pollard D., Rybak O., Saito F., Vieli A., Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, 10.5194/tc-6-573-2012
  41. Pollard David, DeConto Robert M., Modelling West Antarctic ice sheet growth and collapse through the past five million years, 10.1038/nature07809
  42. Pollard D., DeConto R. M., Description of a hybrid ice sheet-shelf model, and application to Antarctica, 10.5194/gmdd-5-1077-2012
  43. Pritchard H. D., Ligtenberg S. R. M., Fricker H. A., Vaughan D. G., van den Broeke M. R., Padman L., Antarctic ice-sheet loss driven by basal melting of ice shelves, 10.1038/nature10968
  44. Ritz Catherine, Rommelaere Vincent, Dumas Christophe, Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region, 10.1029/2001jd900232
  45. Schoof C., The effect of cavitation on glacier sliding, 10.1098/rspa.2004.1350
  46. J. Geophys. Res., 112, F03S28 (2007)
  47. SCHOOF CHRISTIAN, Marine ice-sheet dynamics. Part 1. The case of rapid sliding, 10.1017/s0022112006003570
  48. SCHOOF CHRISTIAN, Marine ice sheet dynamics. Part 2. A Stokes flow contact problem, 10.1017/jfm.2011.129
  49. Schoof C., Hindmarsh R. C. A., Thin-Film Flows with Wall Slip: An Asymptotic Analysis of Higher Order Glacier Flow Models, 10.1093/qjmam/hbp025
  50. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007)
  51. Cryosphere, 4, 1 (2010)
  52. Thoma Malte, Grosfeld Klaus, Mayer Christoph, Pattyn Frank, Ice-flow sensitivity to boundary processes: a coupled model study in the Vostok Subglacial Lake area, Antarctica, 10.3189/2012aog60a009
  53. Weertman J., Deformation of Floating Ice Shelves, 10.1017/s0022143000024710
  54. Winkelmann R., Martin M. A., Haseloff M., Albrecht T., Bueler E., Khroulev C., Levermann A., The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, 10.5194/tc-5-715-2011
Bibliographic reference Pattyn, Frank ; Perichon, Laura ; Durand, Gaël ; Favier, Lionel ; Gagliardini, Olivier ; et. al. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. In: Journal of Glaciology, Vol. 59, no.215, p. 410-422 (2013)
Permanent URL