User menu

A Discrete Solution for the Paradox of Achilles and the Tortoise

Bibliographic reference Ardourel, Vincent. A Discrete Solution for the Paradox of Achilles and the Tortoise. In: Synthese : an international journal for epistemology, methodology and philosophy of science, Vol. 192, no.9, p. 2843 (2861)
Permanent URL
  1. S. ALPER JOSEPH, BRIDGER MARK, 10.1023/a:1004967023017
  2. Alper Joseph S., Bridger Mark, 10.1023/a:1005057130067
  3. Baez John C., Gilliam James W., An algebraic approach to discrete mechanics, 10.1007/bf00761712
  4. Benacerraf Paul, , Tasks, Super-Tasks, and the Modern Eleatics : , 10.2307/2023500
  5. Black M., Achilles and the Tortoise, 10.1093/analys/11.5.91
  6. Bracci L., Fiorentini G., Mezzorani G., Quarati P., Bounds on a hypothetical fundamental length, 10.1016/0370-2693(83)90567-1
  7. Burke Michael B., The Impossibility of Superfeats, 10.1111/j.2041-6962.2000.tb00897.x
  8. Carnap, R. (1966). Philosophical foundations of physics. New York and London: Basic Books.
  9. Chen Jing-Bo, Guo Han-Ying, Wu Ke, Discrete total variation calculus and Lee’s discrete mechanics, 10.1016/j.amc.2005.11.002
  10. Chihara Charles S., On the Possibility of Completing an Infinite Process, 10.2307/2183531
  11. Corless R.M., Essex C., Nerenberg M.A.H., Numerical methods can suppress chaos, 10.1016/0375-9601(91)90404-v
  12. D’Innocenzo, A., Renna, L., & Rotelli, P. (1987). The oscillator in discrete mechanics. Physics Letters, 145B(3–4), 268–270.
  13. D'Innocenzo A, Renna L, Rotelli P, Some studies in discrete mechanics, 10.1088/0143-0807/8/4/003
  14. Desbrun, M., Gawlik, E., Gay-Balmaz, F., & Zeitlin, V. (2014). Variational discretization for rotating stratified fluids. AIMS’ Journals, 34(2).
  15. Feng, K. (1986). Difference schemes for hamiltonian formalism and symplectic geometry. Journal of Computational Mathematics, 4, 279–289.
  16. Feng Kang, Qin Mengzhao, Symplectic Geometric Algorithms for Hamiltonian Systems, ISBN:9783642017766, 10.1007/978-3-642-01777-3
  17. Fetecau R. C., Marsden J. E., Ortiz M., West M., Nonsmooth Lagrangian Mechanics and Variational Collision Integrators, 10.1137/s1111111102406038
  18. Forrest Peter, Is space-time discrete or continuous? ? An empirical question, 10.1007/bf01089732
  19. Friedberg R., Lee T.D., Discrete quantum mechanics, 10.1016/0550-3213(83)90011-1
  20. Gawlik E.S., Mullen P., Pavlov D., Marsden J.E., Desbrun M., Geometric, variational discretization of continuum theories, 10.1016/j.physd.2011.07.011
  21. Grünbaum, A. (1968). Modern Science and Zeno’s Paradoxes. London: George Allen and Unwin Ltd, chapter 2.
  22. GRÜNBAUM ADOLF, Can an Infinitude of Operations be performed in a Finite Time?, 10.1093/bjps/20.3.203
  23. Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations. Berlin, Heidelberg: Springer.
  24. Kane C., Marsden J. E., Ortiz M., Symplectic-energy-momentum preserving variational integrators, 10.1063/1.532892
  25. Laraudogoitia J. P., A Look at the Staccato Run, 10.1007/s11229-004-6238-y
  26. Lee, T. D. (1983). Can time be a discrete dynamical variable? Physics Letters, 122B(3–4), 217–220.
  27. Lee, T. D. (1987). Difference equations and conservation laws. Journal of Statistical Physics, 46(5–6), 843–860.
  28. Lee Taeyoung, Leok Melvin, McClamroch Harris, Discrete Control Systems, Encyclopedia of Complexity and Systems Science (2009) ISBN:9780387758886 p.2002-2019, 10.1007/978-0-387-30440-3_126
  29. Lew, A., Marsden, J. E., Ortiz, M., & West, M. (2003). An overview of variational integrators. In L. P. Franca (Ed.), Finite element methods : 1970’s and beyond (pp. 1–18). Barcelona: CIMNE.
  30. Marsden Jerrold E., Wendlandt Jeffrey M., Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms, Current and Future Directions in Applied Mathematics (1997) ISBN:9781461273806 p.219-261, 10.1007/978-1-4612-2012-1_18
  31. Marsden J. E., West M., Discrete mechanics and variational integrators, 10.1017/s096249290100006x
  32. McLaughlin William I., Miller Sylvia L., An epistemological use of nonstandard analysis to answer Zeno's objections against motion, 10.1007/bf00414288
  33. McLaughlin William I., 10.1023/a:1005045200162
  34. Newton-Smith, W. H. (1980). The structure of time. London: Routledge & Kegan Paul.
  35. Pavlov D., Mullen P., Tong Y., Kanso E., Marsden J.E., Desbrun M., Structure-preserving discretization of incompressible fluids, 10.1016/j.physd.2010.10.012
  36. Pekarek, D.N., & Marsden, J.E. (2008). Variational Collision Integrators and Optimal Control. In Proc. of the 18th International Symposium on Mathematical Theory of Networks and Systems.
  37. Pekarek, D.N. (2010). Variational Methods for Control and Design of Bipedal Robot Models. PhD Thesis. Caltech.
  38. Rowley, C. W., & Marsden, J. E. (2002). Variational Integrators for Point Vortices. Proc. CDC, 40, 1521–1527.
  39. Russell, B. (1929). Our knowledge of the external world (pp. 182–198). New York: Norton & Company, lecture.
  40. Russell, B. (2010). The principles of mathematics. London & New York: Routledge Classics.
  41. Salmon, W. (1980). Space, time and motion: A philosophical introduction. Minneapolis: University of Minnesota Press.
  42. Salmon, W. (Ed.). (2001). Zeno’s paradoxes. Indianapolis, Cambridge: Hackett.
  43. Stern Ari, Desbrun Mathieu, Discrete geometric mechanics for variational time integrators, 10.1145/1508044.1508064
  44. Stern, A., Tong, Y., Desbrun, M., & Marsden, J. E. (2014). Geometric computational electrodynamics with variational integrators and discrete differential forms. Geometry, mechanics, and dynamics: the legacy of Jerry Marsden, Fields Inst. Commun., Springer. In press. preprint:
  45. Thomson, J. (1970). Comments on Professor Benacerraf’s Paper, in Salmon (2001), 130–138.
  46. Van Bendegem Jean Paul, Zeno's Paradoxes and the Tile Argument, 10.1086/289379
  47. Van Bendegem, J. P. (1995). In defence of discrete space and time. Logique & Analyse, 38, 127–150.
  48. Wisdom J. O., Achilles on a Physical Racecourse, 10.1093/analys/12.3.67
  49. Whitehead, A. N. (1979). Process and reality. New York: The Free Press.
  50. Whitehead, A. N. (2000). The concept of nature. Cambridge: Cambridge University Press.
  51. Whitrow, G. J. (1980). The natural philosophy of time. Oxford: Oxford University Press.