User menu

Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the Metabolomic Informative Content and comparison with 1H-NMR

Bibliographic reference Feraud, Baptiste ; Govaerts, Bernadette ; Verleysen, Michel ; de Tullio, Pascal. Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the Metabolomic Informative Content and comparison with 1H-NMR. In: Metabolomics, Vol. 11, no. 6, p. 1756-1768 (2015)
Permanent URL
  1. Akitt J.W., Mann B.E. (2000). NMR and Chemistry (Manual), Cheltenham UK, Stanley Thornes. p. 287.
  2. Aue W. P., Bartholdi E., Ernst R. R., Two‐dimensional spectroscopy. Application to nuclear magnetic resonance, 10.1063/1.432450
  3. Bingol Kerem, Brüschweiler Rafael, Deconvolution of Chemical Mixtures with High Complexity by NMR Consensus Trace Clustering, 10.1021/ac201464y
  4. Bingol Kerem, Bruschweiler-Li Lei, Li Da-Wei, Brüschweiler Rafael, Customized Metabolomics Database for the Analysis of NMR 1H–1H TOCSY and 13C–1H HSQC-TOCSY Spectra of Complex Mixtures, 10.1021/ac500979g
  5. Craig Andrew, Cloarec Olivier, Holmes Elaine, Nicholson Jeremy K., Lindon John C., Scaling and Normalization Effects in NMR Spectroscopic Metabonomic Data Sets, 10.1021/ac0519312
  6. Davies David L., Bouldin Donald W., A Cluster Separation Measure, 10.1109/tpami.1979.4766909
  7. Dunn J. C., A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, 10.1080/01969727308546046
  8. Giraudeau Patrick, Remaud Gérald S., Akoka Serge, Evaluation of Ultrafast 2D NMR for Quantitative Analysis, 10.1021/ac8021168
  9. Hartigan J. A., Wong M. A., Algorithm AS 136: A K-Means Clustering Algorithm, 10.2307/2346830
  10. Holliday, Grouping of Coefficients for the Calculation of Inter-Molecular Similarity and Dissimilarity using 2D Fragment Bit-Strings, 10.2174/1386207024607338
  11. Hubert Lawrence, Arabie Phipps, Comparing partitions, 10.1007/bf01908075
  12. Iman, R. L. (2008). Latin hypercube sampling. New York: Wiley.
  13. Keeler, J. (2010). Understanding NMR Spectroscopy (2nd ed., pp. 190–191). New York: Wiley.
  14. Guennec Adrien Le, Giraudeau Patrick, Caldarelli Stefano, Evaluation of Fast 2D NMR for Metabolomics, 10.1021/ac500966e
  15. Lloyd S. P., Least squares quantization in PCM, Technical Note, Bell Laboratories, IEEE Transactions on Information Theory 28, pp. 128-137 (1957, 1982).
  16. MacKay, D. (2003). An Example Inference Task: Clustering, Information Theory, Inference and Learning Algorithms (pp. 284–292). Cambridge: Cambridge University Press.
  17. MacQueen J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, (vol 1), University of California Press, (pp. 281-297) .
  18. Mao Xi’an, Ye Chaohui, Phase-shift presaturation for water peak suppression in biomolecular NMR experiments, 10.1007/bf02881726
  19. Marion Dominique, Bax Ad, Baseline distortion in real-fourier-transform NMR spectra, 10.1016/0022-2364(88)90230-2
  20. Murtagh F., Legendre P., Ward’s hierarchical clustering method: clustering criterion and agglomerative algorithm, arXiv preprint arXiv:1111.6285 (2011).
  21. Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86–97.
  22. Nicholson Jeremy K., Connelly John, Lindon John C., Holmes Elaine, INNOVATIONMetabonomics: a platform for studying drug toxicity and gene function, 10.1038/nrd728
  23. Plasse Marie, Niang Ndeye, Saporta Gilbert, Villeminot Alexandre, Leblond Laurent, Combined use of association rules mining and clustering methods to find relevant links between binary rare attributes in a large data set, 10.1016/j.csda.2007.02.020
  24. Queiroz Júnior Luiz H. K., Ferreira Antonio G., Giraudeau Patrick, Optimization and practical implementation of ultrafast 2D NMR experiments, 10.1590/s0100-40422013000400016
  25. Rasmussen Lone G., Savorani Francesco, Larsen Thomas M., Dragsted Lars O., Astrup Arne, Engelsen Søren B., Standardization of factors that influence human urine metabolomics, 10.1007/s11306-010-0234-7
  26. Rousseau R., Statistical contribution to the analysis of metabonomic data in 1H-NMR spectroscopy, PhD Thesis, UCL, (2011).
  27. Santos, J. M., & Embrechts, M. (2009). On the use of the adjusted rand index as a metric for evaluating supervised classification, Artificial Neural Networks, ICANN 2009. Berlin: Springer.
  28. Sousa S.A.A., Magalhães Alviclér, Ferreira Márcia Miguel Castro, Optimized bucketing for NMR spectra: Three case studies, 10.1016/j.chemolab.2013.01.006
  29. Vanwinsberghe J., Bubble: development of a matlab tool for automated 1H-NMR data processing in metabonomics, Master’s thesis, Université de Strasbourg (2005).
  30. Vega-Vazquez Marino, Cobas Juan Carlos, Martin-Pastor Manuel, Fast multidimensional localized parallel NMR spectroscopy for the analysis of samples, 10.1002/mrc.2659
  31. Ward Joe H., Hierarchical Grouping to Optimize an Objective Function, 10.1080/01621459.1963.10500845
  32. Xi Yuanxin, de Ropp Jeffrey S., Viant Mark R., Woodruff David L., Yu Ping, Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy, 10.1007/s11306-006-0036-0
  33. Xia J., Wishart D. S., MetPA: a web-based metabolomics tool for pathway analysis and visualization, 10.1093/bioinformatics/btq418
  34. Kwon Yun, Park Sunghyouk, Shin Jongheon, Oh Dong-Chan, Application of 13C-labeling and 13C–13C COSY NMR experiments in the structure determination of a microbial natural product, 10.1007/s12272-013-0254-8