User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Influence of manganese on decomposition of common beech (Fagus sylvatica L.) leaf litter during field incubation

  1. Anderson J. M., The breakdown and decomposition of sweet chestnut (Castanea sativa mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils : II. Changes in the carbon, hydrogen, nitrogen and polyphenol content, 10.1007/bf00347567
  2. Berg Björn, Ekbohm Gunnar, Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII, 10.1139/b91-187
  3. Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Advances in Ecological Research. Elsevier Academic Press, San Diego
  4. Berg B, Staaf H (1980) Decomposition rate and chemical changes in decomposing needle litter of Scots pine. II. Influence of chemical composition. Ecol Bull 32:373–390
  5. Berg Björn, Johansson Maj-Britt, Ekbohm Gunnar, McClaugherty Charles, Rutigliano Flora, Santo Amalia Virzo De, Maximum decomposition limits of forest litter types: a synthesis, 10.1139/b96-084
  6. Berg Björn, Johansson Maj-Britt, Meentemeyer Vernon, Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control, 10.1139/x00-044
  7. Berg B., Steffen K. T., McClaugherty C., Litter decomposition rate is dependent on litter Mn concentrations, 10.1007/s10533-006-9050-6
  8. Berg B., Davey M. P., De Marco A., Emmett B., Faituri M., Hobbie S. E., Johansson M.-B., Liu C., McClaugherty C., Norell L., Rutigliano F. A., Vesterdal L., Virzo De Santo A., Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems, 10.1007/s10533-009-9404-y
  9. Brethes A, Brun JJ, Jabiol B, Ponge J, Toutain F, Classification of forest humus forms: a French proposal, 10.1051/forest:19950602
  10. Chin Yu-Ping., Aiken George., O'Loughlin Edward., Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances, 10.1021/es00060a015
  11. Cortez J., Bouché M.B., Field decomposition of leaf litters: earthworm–microorganism interactions —the ploughing-in effect, 10.1016/s0038-0717(97)00164-8
  12. Coûteaux M.M., McTiernan K.B., Berg B., Szuberla D., Dardenne P., Bottner P., Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition, 10.1016/s0038-0717(97)00169-7
  13. Davey Matthew P., Berg Björn, Emmett Bridget A., Rowland Phil, Decomposition of oak leaf litter is related to initial litter Mn concentrations, 10.1139/b06-150
  14. DILLING J, KAISER K, Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry, 10.1016/s0043-1354(02)00365-2
  15. Fogel Robert, Cromack Jr. Kermit, Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon, 10.1139/b77-190
  16. Guggenberger Georg, Acidification effects on dissolved organic matter mobility in spruce forest ecosystems, 10.1016/0160-4120(94)90064-7
  17. Hammel KE (1997) Fungal degradation of lignin. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. Wye College, Wye, pp 33–45
  18. Hättenschwiler S., Effects of Tree Species Diversity on Litter Quality and Decomposition, Forest Diversity and Function ISBN:3540221913 p.149-164, 10.1007/3-540-26599-6_8
  19. Heim Alexander, Frey Beat, Early stage litter decomposition rates for Swiss forests, 10.1007/s10533-003-0844-5
  20. Hobbie Sarah E., Reich Peter B., Oleksyn Jacek, Ogdahl Megan, Zytkowiak Roma, Hale Cynthia, Karolewski Piotr, TREE SPECIES EFFECTS ON DECOMPOSITION AND FOREST FLOOR DYNAMICS IN A COMMON GARDEN, 10.1890/0012-9658(2006)87[2288:tseoda]2.0.co;2
  21. Hofrichter Martin, Review: lignin conversion by manganese peroxidase (MnP), 10.1016/s0141-0229(01)00528-2
  22. Idol Travis W., Holzbaur Kristen A., Pope Phillip E., Ponder Felix, Control-Bag Correction for Forest Floor Litterbag Contamination, 10.2136/sssaj2002.6200
  23. INGESTAD TORSTEN, A Definition of Optimum Nutrient Requirements in Birch Seedlings. II, 10.1111/j.1399-3054.1971.tb06728.x
  24. IUSS Working Group WRB (2006) World reference base for soil resources. World Soil Resources Reports N°103, 2nd edn. FAO, Rome
  25. Kalbitz K., Solinger S., Park J.-H., Michalzik B., Matzner E., CONTROLS ON THE DYNAMICS OF DISSOLVED ORGANIC MATTER IN SOILS: A REVIEW : , 10.1097/00010694-200004000-00001
  26. Kalbitz K., Schmerwitz J., Schwesig D., Matzner E., Biodegradation of soil-derived dissolved organic matter as related to its properties, 10.1016/s0016-7061(02)00365-8
  27. Kitao M., Lei T.T., Nakamura T., Koike T., Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica), 10.1016/s0269-7491(99)00332-2
  28. Klotzbücher Thimo, Kaiser Klaus, Guggenberger Georg, Gatzek Christiane, Kalbitz Karsten, A new conceptual model for the fate of lignin in decomposing plant litter, 10.1890/10-1307.1
  29. KURZBESSON C, COUTEAUX M, THIERY J, BERG B, REMACLE J, A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement, 10.1016/j.soilbio.2005.03.022
  30. Loneragan Jack F., Distribution and Movement of Manganese in Plants, Manganese in Soils and Plants (1988) ISBN:9789401077682 p.113-124, 10.1007/978-94-009-2817-6_9
  31. Lousier J. D., Parkinson D., Litter decomposition in a cool temperate deciduous forest, 10.1139/b76-041
  32. Melin Elias, Biological Decomposition of Some Types of Litter From North American Forests, 10.2307/1930782
  33. Melillo Jerry M., Aber John D., Muratore John F., Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics, 10.2307/1936780
  34. Millar H. C., Smith F. B., Brown P. E., The Rate of Decomposition of Various Plant Materials in Soils1, 10.2134/agronj1936.00021962002800110005x
  35. Olson Jerry S., Energy Storage and the Balance of Producers and Decomposers in Ecological Systems, 10.2307/1932179
  36. Perez J, Jeffries TW (1992) Role of manganese and organic acid chelator in regulating lignin degradation and biosynthesis of peroxydases by Phanerochaete chrysosporium. Appl Environ Microbiol 58(8):2402–2409
  37. Prescott Cindy E., Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?, 10.1007/s10533-010-9439-0
  38. Sahwney BL, Stilwell DE (1994) Dissolution and elemental analysis of minerals, soils and environmental samples. In: Amonette JE, Zelazny LW (eds) Quantitative methods in soil mineralology. Soil Science Society of America Miscellaneous Publications, Madison, pp 49–82
  39. SAS Institute (1999) SAS/STAT User’s Guide, Version 549 8 for Window. SAS 550 Institute, Inc., Cary
  40. SAS Institute (2009) JMP® 8 User Guide, 2nd edn. SAS Institute Inc., Cary
  41. Simonsson Magnus, Kaiser Klaus, Danielsson Rolf, Andreux Francis, Ranger Jacques, Estimating nitrate, dissolved organic carbon and DOC fractions in forest floor leachates using ultraviolet absorbance spectra and multivariate analysis, 10.1016/j.geoderma.2004.04.010
  42. Titeux H (2005) Transfert de carbone organique dissous et de métaux dans les sols forestiers acides: influence du fonctionnement de la litière et des réserves minérales du sol. M.Sc. Thesis, Unité des sciences du sol, Université catholique de Louvain, Louvain-la-Neuve
  43. Trum Florence, Titeux Hugues, Cornelis Jean-Thomas, Delvaux Bruno, Effects of manganese addition on carbon release from forest floor horizons, 10.1139/x10-224
  44. Van Soest PJ (1963) Use of detergent in the analysis of fibrous feeds. II. A rapid method for the determination of fibre and lignin. J. Assoc Off Anal Chem 46:829–835
  45. Voinovitch IA (1988) Analyse des sols, roches et ciments: methods choisies. Masson edit, Paris in French
  46. Webster R., Analysis of variance, inference, multiple comparisons and sampling effects in soil research, 10.1111/j.1365-2389.2006.00801.x
  47. Wider R. Kelman, Lang Gerald E., A Critique of the Analytical Methods Used in Examining Decomposition Data Obtained From Litter Bags, 10.2307/1940104
  48. Howard P. J. A., Howard D. M., Microbial Decomposition of Tree and Shrub Leaf Litter. 1. Weight Loss and Chemical Composition of Decomposing Litter, 10.2307/3543954
  49. Berg Björn, Decomposition patterns for foliar litter – A theory for influencing factors, 10.1016/j.soilbio.2014.08.005
Bibliographic reference Trum, Florence ; Titeux, Hugues ; Ponette, Quentin ; Berg, Björn. Influence of manganese on decomposition of common beech (Fagus sylvatica L.) leaf litter during field incubation. In: Biogeochemistry : an international journal, no. 125(3), p. 349-358 (2015)
Permanent URL http://hdl.handle.net/2078.1/164923