User menu

Non-Monotonic Set Theory as a Pragmatic Foundation of Mathematics

Bibliographic reference Verdée, Peter. Non-Monotonic Set Theory as a Pragmatic Foundation of Mathematics. In: Foundations of Science, Vol. 18, no. 4, p. 655-680 (2012)
Permanent URL
  1. Batens Diderik, The Need for Adaptive Logics In Epistemology, Logic, Epistemology, and the Unity of Science ISBN:9789048124862 p.459-485, 10.1007/978-1-4020-2808-3_22
  2. Batens Diderik, A Universal Logic Approach to Adaptive Logics, 10.1007/s11787-006-0012-5
  3. Batens, D. (2012). Adaptive logics and dynamic proofs. A study in the dynamics of reasoning (forthcoming).
  4. Batens, D., & De Clercq, K. (2004). A rich paraconsistent extension of full positive logic. Logique et Analyse, 185–188, 227–257 (appeared 2005).
  5. Batens Diderik, Clercq Kristof De, Verdée Peter, Meheus Joke, Yes fellows, most human reasoning is complex, 10.1007/s11229-007-9268-4
  6. Brady Ross T., The simple consistency of a set theory based on the logic ${\rm CSQ}$., 10.1305/ndjfl/1093870447
  7. Brady R. T., Routley R. (1989) The non-triviality of extensional dialectical set theory. In: Priest G., Routley R., Norman J. (eds) Paraconsistent logic: Essays on the inconsistent. Philosophia Verlag, Munich, pp 415–436
  8. Curry Haskell B., The inconsistency of certain formal logics , 10.2307/2269292
  9. Eklof Paul C., Whitehead's Problem is Undecidable, 10.2307/2318684
  10. Field Hartry, Saving Truth From Paradox, ISBN:9780199230747, 10.1093/acprof:oso/9780199230747.001.0001
  11. Fraenkel A. A., Bar-Hillel Y., Lévy A. (1973) Foundations of set theory. North Holland, Amsterdam
  12. Gödel Kurt, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, 10.1007/bf01700692
  13. Kelley J. L. (1975) General topology. Springer, Berlin
  14. Kennedy Juliette Cara, van Atten Mark, , Gödel’s Modernism : On Set-Theoretic Incompleteness, 10.5840/gfpj200425217
  15. Libert, T. (2004). More studies on the axiom of comprehension. PhD thesis, University Libre de Bruxelles, Faculté des Sciences.
  16. Petersen Uwe, 10.1023/a:1005293713265
  17. Priest Graham, In Contradiction, ISBN:9789401081511, 10.1007/978-94-009-3687-4
  18. Quine W. V., New Foundations for Mathematical Logic, 10.2307/2300564
  19. Quine W. V., On the theory of types , 10.2307/2267776
  20. Restall Greg, A note on naive set theory in ${\rm LP}$., 10.1305/ndjfl/1093634406
  21. Restall Greg, How to bereally contraction free, 10.1007/bf01057653
  22. Vanackere, G. (2000). Preferences as inconsistency-resolvers: the inconsistency-adaptive logic PRL. Logic and Logical Philosophy, 8, 47–63 (appeared 2002).
  23. Verdée Peter, Adaptive logics using the minimal abnormality strategy are $$\Pi^1_1$$ -complex, 10.1007/s11229-007-9291-5
  24. Verdée, P. (2012). Strong, universal and provably non-trivial set theory by means of adaptive logic. Logic Journal of the IGPL (submitted). .
  25. Verhoeven, L. (2001). All premisses are equal, but some are more equal than others. Logique et Analyse, 173–175, 165–188 (appeared 2003).
  26. Verhoeven, L. (2003). Proof theories for some prioritized consequence relations. Logique et Analyse, 183–184, 325–344 (appeared 2005).
  27. von Neumann, J. (1967). An axiomatization of set theory. In From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 393–413). Cambridge, MA: Harvard University Press.
  28. Weber Zach, Extensionality and Restriction in Naive Set Theory, 10.1007/s11225-010-9225-y
  30. Weir A, Naive set theory is innocent!, 10.1093/mind/107.428.763
  31. White RichardB., The consistency of the axiom of comprehension in the infinite-valued predicate logic of ?ukasiewicz, 10.1007/bf00258447
  32. Zermelo E., Untersuchungen �ber die Grundlagen der Mengenlehre. I, 10.1007/bf01449999