User menu

Existence results for parametric boundary value problems involving the mean curvature operator

  1. Bereanu C., Mawhin J.: Boundary value problems with non-surjective ϕ-Laplacian and one-side bounded nonlinearity. Adv. Differ. Eqs. 11, 35–60 (2006)
  2. Bonanno Gabriele, A critical point theorem via the Ekeland variational principle, 10.1016/j.na.2011.12.003
  3. Bonanno G., D’Aguì G.: Critical nonlinearities for elliptic Dirichlet problems. Dyn. Syst. Appl. 22, 411–417 (2013)
  4. Bonanno, G., Livrea, R.: Existence and multiplicity of periodic solutions for second order Hamiltonian systems depending on a parameter. J. Convex Anal. 20(4), 1075–1094 (2013)
  5. Bonanno Gabriele, Pizzimenti Pasquale F., Existence results for nonlinear elliptic problems, 10.1080/00036811.2011.625013
  6. BONANNO GABRIELE, SCIAMMETTA ANGELA, AN EXISTENCE RESULT OF ONE NONTRIVIAL SOLUTION FOR TWO POINT BOUNDARY VALUE PROBLEMS, 10.1017/s0004972711002255
  7. Bonheure D., Habets P., Obersnel F., Omari P.: Classical and non-classical positive solutions of a prescribed curvature equation with singularities. Rend. Istit. Math. Univ. Trieste 39, 63–85 (2007)
  8. Bonheure Denis, Habets Patrick, Obersnel Franco, Omari Pierpaolo, Classical and non-classical solutions of a prescribed curvature equation, 10.1016/j.jde.2007.05.031
  9. Brezis H.: Analyse fonctionnelle. Masson, Paris (1987)
  10. Capietto Anna, Dambrosio Walter, Zanolin Fabio, Infinitely many radial solutions to a boundary value problem in a ball, 10.1007/bf02505953
  11. Chang K. C., Zhang Tan, MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION, Nankai Tracts in Mathematics (2006) ISBN:9789812700612 p.113-128, 10.1142/9789812772688_0005
  12. Cid J., Torres Pedro, Solvability for some boundary value problems with $\phi$-Laplacian operators, 10.3934/dcds.2009.23.727
  13. D’Aguì G.: Existence results for a mixed bonundary value probelm with Sturm-Liouville equation. Adv. Pure Appl. Math. 2, 237–248 (2011)
  14. D’Aguì, G.: Multiplicity results for nonlinear mixed boundary value problem. Bound. Val. Problems 2012 (2012:134) 12pp.
  15. Faraci F.: A note on the existence of infinitely many solutions for the one dimensional prescribed curvature equation. Stud. Univ. Babes Bolyai Math. 55(4), 83–90 (2010)
  16. HABETS PATRICK, OMARI PIERPAOLO, MULTIPLE POSITIVE SOLUTIONS OF A ONE-DIMENSIONAL PRESCRIBED MEAN CURVATURE PROBLEM, 10.1142/s0219199707002617
  17. Le Vy Khoi, Some Existence Results on Nontrivial Solutions of the Prescribed Mean Curvature Equation, 10.1515/ans-2005-0201
  18. Obersnel Franco, Classical and Non-Classical Sign-Changing Solutions of a One-Dimensional Autonomous Prescribed Curvature Equation, 10.1515/ans-2007-0409
  19. Obersnel Franco, Omari Pierpaolo, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, 10.1016/j.jde.2010.07.001
  20. Obersnel Franco, Omari Pierpaolo, Multiple non-trivial solutions of the Dirichlet problem for the prescribed mean curvature equation, 10.1090/conm/540/10664
  21. Pan Hongjing, One-dimensional prescribed mean curvature equation with exponential nonlinearity, 10.1016/j.na.2008.01.027
Bibliographic reference Bonanno, Gabriele ; Livrea, Roberto ; Mawhin, Jean. Existence results for parametric boundary value problems involving the mean curvature operator. In: No D E A - Nonlinear Differential Equations and Applications, Vol. 22, no. 3, p. 411-426 (2014)
Permanent URL http://hdl.handle.net/2078.1/163889