User menu

Phytotoxic effects of heavy metal contaminated soil reveal limitations of extract-based ecotoxicological tests

Bibliographic reference Gyuricza, Veronika ; Fodor, Ferenc ; Szigeti, Zoltán. Phytotoxic effects of heavy metal contaminated soil reveal limitations of extract-based ecotoxicological tests. In: Water, Air and Soil Pollution : an international journal of environmental pollution, Vol. 210, no. 1-4, p. 113-122 (2010)
Permanent URL
  1. Alef, K. (1995). Dehydrogenase activity. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 228–229). New York: Academic Press.
  2. Allen, G., & Burton, J. (1991). Assessing the toxicity of freshwater sediments. Annual Review of Environmental Toxicology and Chemistry, 10, 1585–1597.
  3. An, Y. J. (2006). Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 62, 1359–1365.
  4. An, Y. J., Kim, Y. M., Kwon, T. I., & Jeong, S. W. (2004). Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. The Science of the Total Environment, 326, 85–93.
  5. Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13, 1–37.
  6. Bell, P. F., Chaney, R. L., & Angle, J. S. (1991). Free metal activity and total metal concentrations as indeces of micronutrient availability to barley [Hordeum vulgare (L.) ‘Klages’]. Plant & Soil, 130, 51–62.
  7. Boddi, B., Oravecz, A. R., & Lehoczki, E. (1995). Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica, 31, 411–420.
  8. Brohon, B., & Gourdon, R. (2000). Influence of soil microbial activity level on the determination of contaminated soil toxicity using Lumistox and MetPlate bioassays. Soil Biology and Biochemistry, 32, 853–857.
  9. Buschmann Claus, Lichtenthaler Hartmut K., Principles and characteristics of multi-colour fluorescence imaging of plants, 10.1016/s0176-1617(98)80144-2
  10. Colls, J. J., & Hall, D. P. (2004). Application of a chlorophyll fluorescence sensor to detect chelate-induced metal stress in Zea mays. Photosynthetica, 42, 139–145.
  11. Fodor F., Physiological Responses of Vascular Plants to Heavy Metals, Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants (2002) ISBN:9789048159529 p.149-177, 10.1007/978-94-017-2660-3_6
  12. Fodor Ferenc, Sárvári Éva, Láng Ferenc, Szigeti Zoltán, Cseh Edit, Effects of Pb and Cd on Cucumber Depending on the Fe-Complex in the Culture Solution, 10.1016/s0176-1617(96)80276-8
  13. Fuentes, A., Lloréns, M., Sáez, J., Aguilar, M. I., Pérez-Martin, A. B., Ortuño, J. F., et al. (2006). Ecotoxicity, phytotoxicity and extractability of heavy metals from different stabilised sewage sludges. Environmental Pollution, 143, 355–360.
  14. Hernández, L. E., Gárate, A., & Carpena-Ruiz, R. (1997). Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant and Soil, 189, 97–106.
  15. Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.
  16. Horváth, B., Gruiz, K., & Sára, B. (1997). Ecotoxicological testing of soil by four bacterial biotests. Toxicological & Environmental Chemistry, 58, 223–235.
  17. Kozlov, M. V., & Zvereva, E. L. (2007). Does impact of point polluters affect growth and reproduction of herbaceous plants? Water, Air, and Soil Pollution, 186, 183–194.
  18. Krupa, Z., & Baszynszki, T. (1995). Some aspects of heavy metal toxicity towards photosynthetic apparatus—direct and indirect effects on light and dark reactions. Acta Physiologiae Plantarum, 17, 177–190.
  19. Kuster, A., & Altenburger, R. (2007). Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere, 67, 194–201.
  20. Kwan, K. K. (1993). Direct assessment of solid phase samples using Toxi-Chromotest kit. Environmental Toxicology and Water Quality, 8, 223–230.
  21. Larsson, E. H., Bornman, J. F., & Asp, H. (1998). Influence of UV-B radiation and Cd on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany, 49, 1031–1039.
  22. Lei, Y., Korpelainen, H., & Li, C. (2007). Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere, 68, 686–694.
  23. Leitgib, L., Kálmán, J., & Gruiz, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434.
  24. Lichtenthaler, H. K. (1997). Fluorescence imaging as a diagnostic tool for plant stress. Trends in Plant Science, 2, 316–320.
  25. Lichtenthaler, H. K., & Babani, F. (2000). Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiology and Biochemistry, 38, 889–895.
  26. Lichtenthaler Hartmut K., Schweiger Joachim, Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants, 10.1016/s0176-1617(98)80142-9
  27. Mallakin, A., Babu, T. S., Dixon, D. G., & Greenberg, B. M. (2002). Sites of toxicity of specific photooxidation products of anthracene to higher plants: Inhibition of photosynthetic activity and electron transport in Lemna gibba L. G-3 (duckweed). Environmental Toxicology, 17, 462–471.
  28. McGrath, R., & Singleton, I. (2000). Pentachlorophenol transformation in soil: A toxicological assessment. Soil Biology and Biochemistry, 32, 1311–1314.
  29. MSZ (Hungarian Standard) (1988). 21978-30, Investigation of hazardous waste. Azotobacter agile test.
  30. MSZ (Hungarian Standard) (1991). 22902-4, Water toxicological tests. Growth inhibition tests on Sinapis alba seedlings.
  31. MSZ (Hungarian Standard) (1993). 21470-88, Environmental protection: soil testing. Pseudomonas fluorescens soil toxicity test.
  32. MSZ (Hungarian Standard) (1998). 21978-9, Soil extracts for ecotoxicity testing.
  33. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—Verification of chlorophyll standards by atomic-absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384–394.
  34. Power, M., van der Meer, J. R., Tchelet, R., Egli, T., & Eggen, R. (1998). Molecular-based method can contribute to assessments of toxicological risks and bioremediation strategies. Journal of Microbiological Methods, 32, 107–119.
  35. Preston, S., Coad, N., Townend, J., Killham, K., & Paton, G. I. (2000). Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic. Environmental Toxicology and Chemistry, 19, 775–780.
  36. Sayed, O. H. (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321–330.
  37. Schmidt, W. (2003). Iron solutions: Acquisition strategies and signalling pathways in plants. Trends in Plant Science, 8, 188–193.
  38. Schmitt-Jansen, M., & Altenburger, R. (2008). Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquatic Toxicology, 86, 49–58.
  39. Seiler, T. B., Schulze, T., & Hollert, H. (2008). The risk of altering soil and sediment samples upon extract preparation for analytical and bio-analytical investigations—A review. Analytical Bioanalytical Chemistry, 390, 1975–1985.
  40. Sengar, R. S., & Pandey, M. (1996). Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segments. Biologia Plantarum, 38, 459–462.
  41. Snel, J. F. H., & van Kooten, O. (1990). The use of chlorophyll fluorescence and other non-invasive spectroscopic techniques in plant stress physiology. Photosynthesis Research, 25, 146–332.
  42. Steinberg, S. M., Pozomiek, E. J., Engelmann, W. H., & Rogers, K. R. (1995). A review of environmental applications of bioluminescence measurements. Chemosphere, 30, 2155–2197.
  43. Szigeti, Z. (2008). Physiological status of cultivated plants characterised by multi-wavelength fluorescence imaging. Acta Agronomica Hungarica, 56, 223–234.
  44. Titov, A. F., Talanova, V. V., & Boeva, N. P. (1995). Growth responses of barley and wheat seedlings to lead and cadmium. Biologia Plantarum, 38, 431–436.
  45. Torslov, J. (1993). Comparison of bacterial toxicity tests based on growth, dehydrogenase activity and esterase activity of Pseudomonas fluorescens. Ecotoxicology and Environmental Safety, 25, 33–40.
  46. Vassil, A. D., Kapulnik, Y., Raskin, I., & Salt, D. E. (1998). The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117, 447–453.
  47. Viswanathan, R. (1994). Earthworms and assessment of ecological impact of soil xenobiotics. Chemosphere, 28, 413–420.
  48. Wallace, A., Wallace, G. A., & Cha, J. W. (1992). Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents—The special case of iron. Journal of Plant Nutrition, 15, 1589–1598.
  49. Warne, M. S. J., Heemsbergen, D., Stevens, D., McLaughlin, M., Cozens, G., Whatmuff, et al. (2008). Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environmental Toxicology and Chemistry, 27, 786–792.
  50. Weckx, J. E. J., & Clijsters, H. M. M. (1996). Oxidative damage and defence mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amount of copper. Physiologia Plantarum, 96, 506–512.
  51. Weckx, J. E. J., & Clijsters, H. M. M. (1997). Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Phyiology and Biochemistry, 35, 405–410.
  52. Wong, J. W. C., Li, K., Fang, M., & Su, D. C. (2001). Toxicity evaluation of sewage sludges in Hong Kong. Environment International, 27, 373–380.
  53. Yoon, J. M., Oliver, D. J., & Shanks, J. V. (2007). Phytotoxicity and phytoremediation of 2, 6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere, 68, 1050–1057.
  54. Zhang, S. Z., & Shan, X. Q. (1997). The determination of rare earth elements in soil by inductively coupled plasma mass spectrometry. Atomic Spectroscopy, 18, 140–144.