User menu

Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy

Bibliographic reference Wuyts, Nathalie ; Bengough, A. Glyn ; Roberts, Timothy J. ; Du, Chengjin ; Bransby, M. Fraser ; et. al. Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy. In: Planta : an international journal of plant biology, Vol. 234, no. 4, p. 769-784 (2011)
Permanent URL
  1. Barbier de Reuille Pierre, Bohn-Courseau Isabelle, Godin Christophe, Traas Jan, A protocol to analyse cellular dynamics during plant development : A protocol to analyse cellular dynamics, 10.1111/j.1365-313x.2005.02576.x
  2. Basu P., Pal A., Lynch J. P., Brown K. M., A Novel Image-Analysis Technique for Kinematic Study of Growth and Curvature, 10.1104/pp.107.103226
  3. Beemster Gerrit T.S., Baskin Tobias I., Analysis of Cell Division and Elongation Underlying the Developmental Acceleration of Root Growth inArabidopsis thaliana, 10.1104/pp.116.4.1515
  4. Beemster Gerrit T.S., Baskin Tobias I., STUNTED PLANT 1Mediates Effects of Cytokinin, But Not of Auxin, on Cell Division and Expansion in the Root of Arabidopsis, 10.1104/pp.124.4.1718
  5. Beemster G. T.S., Variation in Growth Rate between Arabidopsis Ecotypes Is Correlated with Cell Division and A-Type Cyclin-Dependent Kinase Activity, 10.1104/pp.002923
  6. Bengough AG, Hans J, Bransby MF, Valentine TA (2010) PIV as a method for quantifying root cell growth and particle displacement in confocal images. Microsc Res Tech 73:27–36
  7. Berger Fred, Haseloff Jim, Schiefelbein John, Dolan Liam, Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries, 10.1016/s0960-9822(98)70176-9
  8. Bigün J, Granlund GH (1987) Optimal orientation detection of linear symmetry. In: Proceedings of the first international conference on computer vision, London, 8–11 June 1987. IEEE Computer Society Press, Washington, DC, pp 433–438
  9. Birnbaum K., A Gene Expression Map of the Arabidopsis Root, 10.1126/science.1090022
  10. Black Michael J., Anandan P., The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields, 10.1006/cviu.1996.0006
  11. Campilho Ana, Garcia Bernardo, Toorn Henk v.d., Wijk Henk v., Campilho Aurélio, Scheres Ben, Time-lapse analysis of stem-cell divisions in theArabidopsis thalianaroot meristem, 10.1111/j.1365-313x.2006.02892.x
  12. Casimiro I., Auxin Transport Promotes Arabidopsis Lateral Root Initiation, 10.1105/tpc.13.4.843
  13. Chavarría-Krauser Andrés, Nagel Kerstin A., Palme Klaus, Schurr Ulrich, Walter Achim, Scharr Hanno, Spatio-temporal quantification of differential growth processes in root growth zones based on a novel combination of image sequence processing and refined concepts describing curvature production, 10.1111/j.1469-8137.2007.02299.x
  14. Cutler S. R., Ehrhardt D. W., Griffitts J. S., Somerville C. R., Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency, 10.1073/pnas.97.7.3718
  15. De Veylder Lieven, Beemster Gerrit T.S., Beeckman Tom, Inzé Dirk, CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression : CKS1At overexpression in Arabidopsis, 10.1046/j.1365-313x.2001.00996.x
  16. Dello Ioio Raffaele, Linhares Francisco Scaglia, Scacchi Emanuele, Casamitjana-Martinez Eva, Heidstra Renze, Costantino Paolo, Sabatini Sabrina, Cytokinins Determine Arabidopsis Root-Meristem Size by Controlling Cell Differentiation, 10.1016/j.cub.2007.02.047
  17. Freixes S., Thibaud M-C., Tardieu F., Muller B., Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings, 10.1046/j.1365-3040.2002.00912.x
  18. French A., Ubeda-Tomas S., Holman T. J., Bennett M. J., Pridmore T., High-Throughput Quantification of Root Growth Using a Novel Image-Analysis Tool, 10.1104/pp.109.140558
  19. Hammond J. P., White P. J., Sucrose transport in the phloem: integrating root responses to phosphorus starvation, 10.1093/jxb/erm221
  20. Hauser Marie-Theres, 10.1023/a:1026421417979
  21. Hermans Christian, Hammond John P., White Philip J., Verbruggen Nathalie, How do plants respond to nutrient shortage by biomass allocation?, 10.1016/j.tplants.2006.10.007
  22. Jiang HS, Palaniappan K, Baskin TI (2003) A combined matching and tensor method to obtain high fidelity velocity fields from image sequences of the non-rigid motion of the growth of a plant root. In: Hamza MH (ed) IASTED international conference on biomedical engineering, BioMED 2003. ACTA Press, Calgary, Canada, 386–010, pp 159–165
  23. Kurup Smita, Runions John, Köhler Uwe, Laplaze Laurent, Hodge Sarah, Haseloff Jim, Marking cell lineages in living tissues : Marking cell lineages in living tissues, 10.1111/j.1365-313x.2005.02386.x
  24. MacGregor D. R., Deak K. I., Ingram P. A., Malamy J. E., Root System Architecture in Arabidopsis Grown in Culture Is Regulated by Sucrose Uptake in the Aerial Tissues, 10.1105/tpc.107.055475
  25. Miller Nathan D., Parks Brian M., Spalding Edgar P., Computer-vision analysis of seedling responses to light and gravity : Computer-vision analysis of seedling responses, 10.1111/j.1365-313x.2007.03237.x
  26. Mullen Jack L., Ishikawa Hideo, Evans Michael L., Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation, 10.1007/s004250050437
  27. Peters Winfried S, Baskin Tobias I, 10.1186/1746-4811-2-11
  28. Reddy G. Venugopala, Gordon Sean P., Meyerowitz Elliot M., Unravelling developmental dynamics: transient intervention and live imaging in plants, 10.1038/nrm2188
  29. Roberts Timothy J., McKenna Stephen J., Du Cheng-Jin, Wuyts Nathalie, Valentine Tracy A., Bengough A. Glyn, Estimating the motion of plant root cells from in vivo confocal laser scanning microscopy images, 10.1007/s00138-009-0207-x
  30. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205
  31. Schmundt Dominik, Stitt Mark, Jahne Bernd, Schurr Ulrich, Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis, 10.1046/j.1365-313x.1998.00314.x
  32. Shimizu Masao, Okutomi Masatoshi, Sub-Pixel Estimation Error Cancellation on Area-Based Matching, 10.1007/s11263-005-6878-5
  33. Teale William D., Paponov Ivan A., Ditengou Franck, Palme Klaus, Auxin and the developing root of Arabidopsis thaliana, 10.1111/j.1399-3054.2005.00475.x
  34. van der Weele C. M., A New Algorithm for Computational Image Analysis of Deformable Motion at High Spatial and Temporal Resolution Applied to Root Growth. Roughly Uniform Elongation in the Meristem and Also, after an Abrupt Acceleration, in the Elongation Zone, 10.1104/pp.103.021345
  35. Verbelen Jean-Pierre, Cnodder Tinne De, Le Jie, Vissenberg Kris, Baluška František, The Root Apex ofArabidopsis thalianaConsists of Four Distinct Zones of Growth Activities : Meristematic Zone, Transition Zone, Fast Elongation Zone and Growth Terminating Zone, 10.4161/psb.1.6.3511
  36. Vollsnes A. V., Futsaether C. M., Bengough A. G., Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocimetry, 10.1111/j.1365-2389.2010.01297.x
  37. Walter A., Spies H., Terjung S., Küsters R., Kirchgeßner N., Schurr U., Spatio‐temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing, 10.1093/jexbot/53.369.689
  38. White D. J., Take W. A., Bolton M. D., Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry, 10.1680/geot.2003.53.7.619