User menu

Emission pathways consistent with a 2°C global temperature limit

Bibliographic reference Rogelj, Joeri ; Hare, William ; Lowe, Jason ; Van Vuuren, Detlef P. ; Riahi, Keywan ; et. al. Emission pathways consistent with a 2°C global temperature limit. In: Nature Climate Change, Vol. 1, no. 8, p. 413-418 (2011)
Permanent URL
  1. Meinshausen Malte, Meinshausen Nicolai, Hare William, Raper Sarah C. B., Frieler Katja, Knutti Reto, Frame David J., Allen Myles R., Greenhouse-gas emission targets for limiting global warming to 2 °C, 10.1038/nature08017
  2. Matthews H. Damon, Gillett Nathan P., Stott Peter A., Zickfeld Kirsten, The proportionality of global warming to cumulative carbon emissions, 10.1038/nature08047
  3. Allen Myles R., Frame David J., Huntingford Chris, Jones Chris D., Lowe Jason A., Meinshausen Malte, Meinshausen Nicolai, Warming caused by cumulative carbon emissions towards the trillionth tonne, 10.1038/nature08019
  4. Archer David, Eby Michael, Brovkin Victor, Ridgwell Andy, Cao Long, Mikolajewicz Uwe, Caldeira Ken, Matsumoto Katsumi, Munhoven Guy, Montenegro Alvaro, Tokos Kathy, Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, 10.1146/
  5. Plattner G.-K., Knutti R., Joos F., Stocker T. F., von Bloh W., Brovkin V., Cameron D., Driesschaert E., Dutkiewicz S., Eby M., Edwards N. R., Fichefet T., Hargreaves J. C., Jones C. D., Loutre M. F., Matthews H. D., Mouchet A., Müller S. A., Nawrath S., Price A., Sokolov A., Strassmann K. M., Weaver A. J., Long-Term Climate Commitments Projected with Climate–Carbon Cycle Models, 10.1175/2007jcli1905.1
  6. Lowe J A, Huntingford C, Raper S C B, Jones C D, Liddicoat S K, Gohar L K, How difficult is it to recover from dangerous levels of global warming?, 10.1088/1748-9326/4/1/014012
  7. Held Isaac M., Winton Michael, Takahashi Ken, Delworth Thomas, Zeng Fanrong, Vallis Geoffrey K., Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing, 10.1175/2009jcli3466.1
  8. Solomon S., Daniel J. S., Sanford T. J., Murphy D. M., Plattner G.-K., Knutti R., Friedlingstein P., Persistence of climate changes due to a range of greenhouse gases, 10.1073/pnas.1006282107
  9. Schewe J., Levermann A., Meinshausen M., Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise, 10.5194/esd-2-25-2011
  10. Clarke Leon, Edmonds Jae, Krey Volker, Richels Richard, Rose Steven, Tavoni Massimo, International climate policy architectures: Overview of the EMF 22 International Scenarios, 10.1016/j.eneco.2009.10.013
  11. Edenhofer O., Energy J., 31, 11 (2010)
  12. van Vuuren Detlef P., Riahi Keywan, The relationship between short-term emissions and long-term concentration targets : A letter, 10.1007/s10584-010-0004-6
  13. Meinshausen M., Raper S. C. B., Wigley T. M. L., Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration, 10.5194/acp-11-1417-2011
  14. van Vuuren Detlef P., Lowe Jason, Stehfest Elke, Gohar Laila, Hof Andries F., Hope Chris, Warren Rachel, Meinshausen Malte, Plattner Gian-Kasper, How well do integrated assessment models simulate climate change?, 10.1007/s10584-009-9764-2
  15. Azar Christian, Lindgren Kristian, Obersteiner Michael, Riahi Keywan, van Vuuren Detlef P., den Elzen K. Michel G. J., Möllersten Kenneth, Larson Eric D., The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS), 10.1007/s10584-010-9832-7
  16. Barker Terry, Serban Scrieciu S., Modeling Low Climate Stabilization with E3MG: Towards a 'New Economics' Approach to Simulating Energy-Environment-Economy System Dynamics, 10.5547/issn0195-6574-ej-vol31-nosi-6
  17. Loulou Richard, Labriet Maryse, Kanudia Amit, Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes, 10.1016/j.eneco.2009.06.012
  18. Krey Volker, Riahi Keywan, Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets—Greenhouse gas mitigation scenarios for the 21st century, 10.1016/j.eneco.2009.07.001
  19. Calvin Katherine, Edmonds James, Bond-Lamberty Ben, Clarke Leon, Kim Son H., Kyle Page, Smith Steven J., Thomson Allison, Wise Marshall, 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century, 10.1016/j.eneco.2009.06.006
  20. Wise M., Calvin K., Thomson A., Clarke L., Bond-Lamberty B., Sands R., Smith S. J., Janetos A., Edmonds J., Implications of Limiting CO2 Concentrations for Land Use and Energy, 10.1126/science.1168475
  21. O’Neill B. C., Proc. Natl Acad. Sci. USA, 107, 1011 (2009)
  22. Tebaldi C., Knutti R., The use of the multi-model ensemble in probabilistic climate projections, 10.1098/rsta.2007.2076
  23. Rogelj Joeri, Hare William, Chen Claudine, Meinshausen Malte, Discrepancies in historical emissions point to a wider 2020 gap between 2 °C benchmarks and aggregated national mitigation pledges, 10.1088/1748-9326/6/2/024002
  24. Meinshausen M., Wigley T. M. L., Raper S. C. B., Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications, 10.5194/acp-11-1457-2011
  25. Friedlingstein P., Cox P., Betts R., Bopp L., von Bloh W., Brovkin V., Cadule P., Doney S., Eby M., Fung I., Bala G., John J., Jones C., Joos F., Kato T., Kawamiya M., Knorr W., Lindsay K., Matthews H. D., Raddatz T., Rayner P., Reick C., Roeckner E., Schnitzler K.-G., Schnur R., Strassmann K., Weaver A. J., Yoshikawa C., Zeng N., Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, 10.1175/jcli3800.1