User menu

Atmospheric Angular Momentum Time-Series: Characterization of their Internal Noise and Creation of a Combined Series

Bibliographic reference Koot, L. ; Viron, O. de. ; Dehant, Véronique. Atmospheric Angular Momentum Time-Series: Characterization of their Internal Noise and Creation of a Combined Series. In: Journal of Geodesy, Vol. 79, no.12, p. 663-674 (2006)
Permanent URL
  1. Barnes RTH, Hide R, White AA, Wilson CA (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc R Soc London Ser A 387:31–73
  2. Brzezinski A (1992) Polar motion excitation by variation of the effective angular momentum function: considerations concerning deconvolution problem. Manuscr Geodaet 17(1):3–20
  3. Chin TM, Gross RS, Dickey JO (2005) Multi-reference evaluation of uncertainty in Earth orientation parameter measurements. J Geod 79(1–3):24–32
  4. de Viron O, Koot L, Dehant V (2005) Polar motion models: the torque approach. In: Proceedings of Chandler Wobble Workshop, Luxembourg, pp 9–14
  5. Galindo FJ, Ruiz JJ, Giachino E, Premoli A, Tavella P (2001) Estimation of the covariance matrix of individual standards by means of comparison measurements. Advanced mathematical and computational tools in metrology 5. Series on advances in Mathematics for applied sciences, vol. 57. World Scientific, Singapore, pp 179–183
  6. Gambis D (2002) Allan variance in Earth rotation time series analysis. Adv Space Res 30(2):207–212
  7. Gray JE, Allan DW (1974) A method for estimating the frequency stability of an individual oscillator. In: Proceedings of 28th frequency control symposium, pp 243–246
  8. Gross RS (1992) Correspondance between theory and observations of polar motion. Geophys J Int 109:162–170
  9. Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobble during 1980-2000. J Geophys Res 108(B8):2370, DOI: 10.1029/2002JB002143
  10. Gross RS (2003) Combinations of Earth orientation measurements: SPACE2002, COMB2002, and POLE2002. JPL Publ 03-11, Jet Propulsion Laboratory, Pasadena, 28 pp
  11. Holme R, de Viron O (2005) Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophys J Int 160:435–439
  12. Kolaczek B, Nastula J, Salstein D (2003) El Nino-related variations in atmosphere–polar motion interactions. J Geodyn 36(3):397–406
  13. Kouba J (2005) Comparison of polar motion with oceanic and atmospheric angular momentum time series for 2-day to Chandler periods. J Geod 79(1–3):33–42
  14. Kouba J, Vondrák J (2005) Comparison of length of day with oceanic and atmospheric angular momentum series. J Geod 79(4–5):256–268
  15. Nastula J, Salstein D (1999) Regional atmospheric angular momentum contributions to polar motion excitation. J Geophys Res 104(B4):7347–7358
  16. Premoli A, Tavella P (1993) A revisited three-cornered hat method for estimating frequency standard instability. IEEE Trans Instrumen Meas 42(1):7–13
  17. Salstein DA, Kann DM, Miller AJ, Rosen RD (1993) The sub-bureau for atmospheric angular momentum of the international Earth rotation service: a meteorological data center with geodetic applications. Bull Am Meteorol Soc 74:67–80
  18. Tavella P, Premoli A (1994) Estimating the instabilities of N clocks by measuring differences of their readings. Metrologia 30(5):479–486
  19. Tavella P, Premoli A (1991) Characterization of frequency standard instability by estimation of their covariance matrix. In: Proceedings of 23rd annual precise time and time interval (PTTI) applications and planning meeting, pp 265–276