User menu

Catalase and ascorbate peroxidase activities are not directly involveded in the silicon-mediated alleviation of ferrous iron toxicity in rice

Bibliographic reference Mbonankira, J.E. ; Coq, S. ; Vromman, Delphine ; Lutts, Stanley ; Nizigiyimana, A. ; et. al. Catalase and ascorbate peroxidase activities are not directly involveded in the silicon-mediated alleviation of ferrous iron toxicity in rice. In: Journal of Plant Nutrition and Soil Science, Vol. 178, no.3, p. 477-485 (2015)
Permanent URL
  1. Abifarin , A. 1989
  2. Abraham, Int. Rice Res. Newsl., 14, 2 (1989)
  3. Abu, Int. Rice Res. Newsl., 14, 19 (1989)
  4. Al-aghabary Khalid, Zhu Zhujun, Shi Qinhua, Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence, and Antioxidative Enzyme Activities in Tomato Plants Under Salt Stress, 10.1081/pln-200034641
  5. Asada K., Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions, 10.1104/pp.106.082040
  6. Asch Folkard, Becker Mathias, Kpongor Dilys S., A quick and efficient screen for resistance to iron toxicity in lowland rice, 10.1002/jpln.200520540
  7. Audebert, Iron Toxicity in Rice-Based Systems in West Africa., 18 (2006)
  8. Audebert A., Sahrawat K.L., Mechanisms for iron toxicity tolerance in lowland rice, 10.1080/01904160009382150
  9. Becana M., Moran J.F., Iturbe-Ormaetxe I., 10.1023/a:1004375732137
  10. Becker Mathias, Asch Folkard, Iron toxicity in rice—conditions and management concepts, 10.1002/jpln.200520504
  11. Bode K., D�ring O., L�thje S., Neue H. -U., B�ttger M., The role of active oxygen in iron tolerance of rice (Oryza sauva L.), 10.1007/bf01276928
  12. BONIFACIO AURENIVIA, MARTINS MARCIO O., RIBEIRO CAROLINA W., FONTENELE ADILTON V., CARVALHO FABRICIO E. L., MARGIS-PINHEIRO MÁRCIA, SILVEIRA JOAQUIM A. G., Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress : Rice cytosolic APX knockdown under abiotic stress, 10.1111/j.1365-3040.2011.02366.x
  13. Bradford Marion M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, 10.1016/0003-2697(76)90527-3
  14. Cakmak I., Marschner H., Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves, 10.1104/pp.98.4.1222
  15. Dufey I., Gheysens S., Ingabire A., Lutts S., Bertin P., Silicon Application in Cultivated Rices (Oryza sativaL andOryza glaberrimaSteud) Alleviates Iron Toxicity Symptoms Through the Reduction in Iron Concentration in the Leaf Tissue, 10.1111/jac.12046
  16. Fang Wei-Ching, Wang Jen-Wu, Lin Chuan Chi, Kao Ching Huei, 10.1023/a:1013879019368
  17. Feng Jianpeng, Shi Qinghua, Wang Xiufeng, Wei Min, Yang Fengjuan, Xu Huini, Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L., 10.1016/j.scienta.2009.10.013
  18. Gong Haijun, Zhu Xueyi, Chen Kunming, Wang Suomin, Zhang Chenglie, Silicon alleviates oxidative damage of wheat plants in pots under drought, 10.1016/j.plantsci.2005.02.023
  19. Heath, Arch. Biochem. Biophys., 125, 180 (1968)
  20. INGER-International Network for Genetic Evaluation of Rice 1996
  21. Kampfenkel K., Vanmontagu M., Inze D., Extraction and Determination of Ascorbate and Dehydroascorbate from Plant Tissue, 10.1006/abio.1995.1127
  22. Lee Dong Hee, Kim Young Sang, Lee Chin Bum, The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.), 10.1078/0176-1617-00174
  23. Liang Yongchao, 10.1023/a:1004526604913
  25. Liang Yongchao, Chen Q.i.n., Liu Qian, Zhang Wenhua, Ding Ruixing, Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.), 10.1078/0176-1617-01065
  26. Liang Yongchao, Sun Wanchun, Zhu Yong-Guan, Christie Peter, Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review, 10.1016/j.envpol.2006.06.008
  27. Liu Jinguang, Zhang Hongmei, Zhang Yuxiu, Chai Tuanyao, Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress, 10.1016/j.plaphy.2013.03.018
  28. Ma Jian Feng, Tamai Kazunori, Yamaji Naoki, Mitani Namiki, Konishi Saeko, Katsuhara Maki, Ishiguro Masaji, Murata Yoshiko, Yano Masahiro, A silicon transporter in rice, 10.1038/nature04590
  29. Ma Jian Feng, Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, 10.1080/00380768.2004.10408447
  30. Ma, Soil, Fertilizer, and Plant Silicon Research in Japan. (2002)
  31. Majerus V., Bertin P., Swenden V., Fortemps A., Lobréaux S., Lutts S., Organ-dependent responses of the african rice to short-term iron toxicity: Ferritin regulation and antioxidative responses, 10.1007/s10535-007-0060-6
  32. Mitani N., Uptake system of silicon in different plant species, 10.1093/jxb/eri121
  33. Nakano, Plant Cell Physiol., 22, 867 (1981)
  34. Nyamangyoku , O. 2006 Oryza sativa Oryza glaberrima
  35. Masato Okamura, An improved method for determination of l-ascorbic acid and l-dehydroascorbic acid in blood plasma, 10.1016/0009-8981(80)90144-8
  36. Sahrawat K. L., Iron Toxicity in Wetland Rice and the Role of Other Nutrients, 10.1081/pln-200025869
  37. Singh, Int. Rice Res. Newsl., 17, 18 (1992)
  38. Soga Kouichi, Harada Keita, Wakabayashi Kazuyuki, Hoson Takayuki, Kamisaka Seiichiro, Increased Molecular Mass of Hemicellulosic Polysaccharides is Involved in Growth Inhibition of Maize Coleoptiles and Mesocotyls under Hypergravity Conditions, 10.1007/pl00013881
  39. Tale Ahmad, Czech J. Genet. Plant Breed., 47, 17 (2011)
  40. Virmani, Int. Rice Res. Newsl., 2, 4 (1977)
  41. Yamauchi M., Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application, 10.1007/bf02220722
  42. Yoshida , S. Forno , D. A. Cock , J. H. Gomez , K. A. 1976 rd
  43. Zhu Zhujun, Wei Guoqiang, Li Juan, Qian Qiongqiu, Yu Jingquan, Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.), 10.1016/j.plantsci.2004.04.020