User menu

The “wrong skewness” problem in stochastic frontier models: A new approach

Bibliographic reference Hafner, Christian ; Manner, Hans ; Simar, Léopold. The “wrong skewness” problem in stochastic frontier models: A new approach. In: Econometric Reviews, no. (n/a, Available online: 14 Jan 2016), p. 1-21 (2016)
Permanent URL
  1. Ahmad Ibrahim A., Li Qi, Testing symmetry of an unknown density function by kernel method, 10.1080/10485259708832704
  2. Aigner Dennis, Lovell C.A.Knox, Schmidt Peter, Formulation and estimation of stochastic frontier production function models, 10.1016/0304-4076(77)90052-5
  3. Almanidis Pavlos, Qian Junhui, Sickles Robin C., Stochastic Frontier Models with Bounded Inefficiency, Festschrift in Honor of Peter Schmidt (2014) ISBN:9781489980076 p.47-81, 10.1007/978-1-4899-8008-3_3
  4. Almanidis Pavlos, Sickles Robin C., The Skewness Issue in Stochastic Frontiers Models: Fact or Fiction?, Exploring Research Frontiers in Contemporary Statistics and Econometrics (2011) ISBN:9783790823486 p.201-227, 10.1007/978-3-7908-2349-3_10
  5. Amemiya T., Advanced Econometrics (1985)
  6. Bartelsman, E. J., Gray, W. (1996). The National Bureau of Economic Research (NBER) manufacturing productivity database. Nber technical working paper.
  7. Carree Martin A., Technological inefficiency and the skewness of the error component in stochastic frontier analysis, 10.1016/s0165-1765(02)00119-2
  8. Greene William H., A Gamma-distributed stochastic frontier model, 10.1016/0304-4076(90)90052-u
  9. Greene W. H., The Measurement of Productive Efficiency: Techniques and Applications (2007)
  10. Kumbhakar Subal C., Lovell C. A. Knox, Stochastic Frontier Analysis, ISBN:9781139174411, 10.1017/cbo9781139174411
  11. Kuosmanen Timo, Fosgerau Mogens, Neoclassical versus Frontier Production Models? Testing for the Skewness of Regression Residuals, 10.1111/j.1467-9442.2009.01567.x
  12. Lee Lung-Fei, Asymptotic Distribution of the Maximum Likelihood Estimator for a Stochastic Frontier Function Model with a Singular Information Matrix, 10.1017/s026646660000774x
  13. Li Qi, Estimating a stochastic production frontier when the adjusted error is symmetric, 10.1016/s0165-1765(96)00857-9
  14. Meeusen Wim, van Den Broeck Julien, Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error, 10.2307/2525757
  15. Olson Jerome A., Schmidt Peter, Waldman Donald M., A Monte Carlo study of estimators of stochastic frontier production functions, 10.1016/0304-4076(80)90043-3
  16. Ritter Christian, Simar Léopold, 10.1023/a:1007751524050
  17. Simar Léopold, Wilson Paul W., Inferences from Cross-Sectional, Stochastic Frontier Models, 10.1080/07474930903324523
  18. Stevenson Rodney E., Likelihood functions for generalized stochastic frontier estimation, 10.1016/0304-4076(80)90042-1
  19. Waldman Donald M., A stationary point for the stochastic frontier likelihood, 10.1016/0304-4076(82)90041-0