User menu

From polygons and symbols to polylogarithmic functions

Bibliographic reference Duhr, Claude ; Gangl, Herbert ; Rhodes, John R.. From polygons and symbols to polylogarithmic functions. In: Journal of High Energy Physics, Vol. 2012, no.10, p. 75 (2012)
Permanent URL
  1. Goncharov A. B., Multiple polylogarithms, cyclotomy and modular complexes, 10.4310/mrl.1998.v5.n4.a7
  2. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 .
  3. S. Bloch, Higher regulators, algebraic K- theory and zeta functions of elliptic curves, Volume 11 of CRM Monograph Series, AMS, Providence, RI, U.S.A. (2000).
  4. A. Beilinson, Polylogarithms and cyclotomic elements, MIT preprint (1989).
  5. D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in G. van der Geer, F. Oort, J. Steenbrink eds., Arithmetic Algebraic Geometry, Prog. Math. 89 Birkhäuser (1991), pg. 391-430.
  6. Beĭlinson A., Deligne P., Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, 10.1090/pspum/055.2/1265552
  7. Goncharov A.B., Geometry of Configurations, Polylogarithms, and Motivic Cohomology, 10.1006/aima.1995.1045
  8. Goncharov A. B., Galois symmetries of fundamental groupoids and noncommutative geometry, 10.1215/s0012-7094-04-12822-2
  9. Dupont Johan L., Sah Chih-Han, Scissors congruences, II, 10.1016/0022-4049(82)90035-4
  10. J.L. Cathelineau, Quelques aspects du troisième problème de Hilbert, Gaz. Math. 52 (1992) 45.
  11. Goncharov Alexander, 10.1090/s0894-0347-99-00293-3
  12. B�hm Johannes, Inhaltsmessung imR 5 konstanter Kr�mmung, 10.1007/bf01236949
  13. Neumann Walter D., Zagier Don, Volumes of hyperbolic three-manifolds, 10.1016/0040-9383(85)90004-7
  14. Zagier Don, Hyperbolic manifolds and special values of Dedekind zeta-functions, 10.1007/bf01388964
  15. Kellerhals R., Volumes in hyperbolic 5-space, 10.1007/bf01902056
  16. Neumann Walter D., Yang Jun, Bloch invariants of hyperbolic $3$ -manifolds, 10.1215/s0012-7094-99-09602-3
  17. A.M. Gabrielov, I.M. Gelfand and M.V. Losik, Combinatorial computation of characteristic classes, Funct. Anal. Appl.+ 9 (1975) 5.
  18. Zagier Don, The Dilogarithm Function, Frontiers in Number Theory, Physics, and Geometry II ISBN:9783540303077 p.3-65, 10.1007/978-3-540-30308-4_1
  19. Bloch Spencer, Kriz Igor, Mixed Tate Motives, 10.2307/2118618
  20. H. Gangl and S. Mueller-Stach, Polylogarithmic identities in cubical higher Chow groups, in Algebraic K-Theory. Proceedings of Symposia in Pure Mathematics 67, AMS, Providence, RI, U.S.A (1999) 25.
  21. Gangl H., Goncharov A. B., Levin A., Multiple polylogarithms, polygons, trees and algebraic cycles, 10.1090/pspum/080.2/2483947
  22. Chen Kuo-Tsai, Iterated path integrals, 10.1090/s0002-9904-1977-14320-6
  23. Hain Richard M., Classical polylogarithms, 10.1090/pspum/055.2/1265550
  24. Z. Wojtkowiak, Mixed Hodge structures and iterated integrals I, in F. Bogomolov and L. Katzarkov eds. Motives, Polylogarithms and Hodge Theory (Part I: Motives and Polylogarithms), Int. Press Lect. Ser. 3 (2002) 121.
  25. REMIDDI E., VERMASEREN J. A. M., HARMONIC POLYLOGARITHMS, 10.1142/s0217751x00000367
  26. Gehrmann T., Remiddi E., Two-loop master integrals for jets: the planar topologies, 10.1016/s0550-3213(01)00057-8
  27. Ablinger Jakob, Blümlein Johannes, Schneider Carsten, Harmonic sums and polylogarithms generated by cyclotomic polynomials, 10.1063/1.3629472
  28. Vermaseren J.A.M., Vogt A., Moch S., The third-order QCD corrections to deep-inelastic scattering by photon exchange, 10.1016/j.nuclphysb.2005.06.020
  29. Moch S., Vermaseren J.A.M., Vogt A., The longitudinal structure function at the third order, 10.1016/j.physletb.2004.11.063
  30. Vogt A., Moch S., Vermaseren J.A.M., The three-loop splitting functions in QCD: the singlet case, 10.1016/j.nuclphysb.2004.04.024
  31. Moch S., Vermaseren J.A.M., Vogt A., The three-loop splitting functions in QCD: the non-singlet case, 10.1016/j.nuclphysb.2004.03.030
  32. Bonciani R., Mastrolia P., Remiddi E., Master integrals for the 2-loop QCD virtual corrections to the forward–backward asymmetry, 10.1016/j.nuclphysb.2004.04.011
  33. Bernreuther W., Bonciani R., Gehrmann T., Heinesch R., Leineweber T., Mastrolia P., Remiddi E., Two-loop QCD corrections to the heavy quark form factors: the vector contributions, 10.1016/j.nuclphysb.2004.10.059
  34. Bernreuther W., Bonciani R., Gehrmann T., Heinesch R., Leineweber T., Mastrolia P., Remiddi E., Two-loop QCD corrections to the heavy quark form factors: Axial vector contributions, 10.1016/j.nuclphysb.2005.01.035
  35. Bernreuther W., Bonciani R., Gehrmann T., Heinesch R., Leineweber T., Remiddi E., Two-loop QCD corrections to the heavy quark form factors: Anomaly contributions, 10.1016/j.nuclphysb.2005.06.025
  36. Mastrolia P., Remiddi E., Two-loop form factors in QED, 10.1016/s0550-3213(03)00405-x
  37. Bonciani R., Ferroglia A., Mastrolia P., Remiddi E., van der Bij J.J., Two-loop QED Bhabha scattering: Soft emission and numerical evaluation of the differential cross-section, 10.1016/j.nuclphysb.2005.03.010
  38. Bonciani R., Ferroglia A., Mastrolia P., Remiddi E., van der Bij J.J., Two-loop QED Bhabha scattering differential cross section, 10.1016/j.nuclphysb.2004.09.015
  39. M. Czakon, J. Gluza and T. Riemann, Master integrals for massive two-loop bhabha scattering in QED, Phys. Rev. D 71 (2005) 073009 [ hep-ph/0412164 ] [ INSPIRE ].
  40. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [ hep-th/0610248 ] [ INSPIRE ].
  41. Heinrich G., Smirnov V.A., Analytical evaluation of dimensionally regularized massive on-shell double boxes, 10.1016/j.physletb.2004.07.058
  42. Smirnov V.A., Analytical result for dimensionally regularized massive on-shell planar double box, 10.1016/s0370-2693(01)01382-x
  43. Bork L. V., Kazakov D. I., Vartanov G. S., On form factors in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep02(2011)063
  44. Henn Johannes M., Naculich Stephen G., Schnitzer Howard J., Spradlin Marcus, More loops and legs in Higgs-regulated $$ \mathcal{N} = 4 $$ SYM amplitudes, 10.1007/jhep08(2010)002
  45. Aglietti Ugo, Bonciani Roberto, Degrassi Giuseppe, Vicini Alessandro, Analytic results for virtual QCD corrections to Higgs production and decay, 10.1088/1126-6708/2007/01/021
  46. Aglietti U., Bonciani R., Degrassi G., Vicini A., Master integrals for the two-loop light fermion contributions to ggH and Hγγ, 10.1016/j.physletb.2004.09.001
  47. Aglietti U., Bonciani R., Degrassi G., Vicini A., Two-loop light fermion contribution to Higgs production and decays, 10.1016/j.physletb.2004.06.063
  48. Gehrmann T., Remiddi E., Two-loop master integrals for jets: the non-planar topologies, 10.1016/s0550-3213(01)00074-8
  49. Anastasiou Charalampos, Beerli Stefan, Bucherer Stefan, Daleo Alejandro, Kunszt Zoltan, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, 10.1088/1126-6708/2007/01/082
  50. S. Moch, P. Uwer and S. Weinzierl, Two loop amplitudes with nested sums: Fermionic contributions to e+ e− → q $ \bar{q} $ g, Phys. Rev. D 66 (2002) 114001 [ hep-ph/0207043 ] [ INSPIRE ].
  51. S. Moch, P. Uwer and S. Weinzierl, Two loop amplitudes for e+ e− → q $ \bar{q} $ g: The n(f ) contribution, Acta Phys. Polon. B 33 (2002) 2921 [ hep-ph/0207167 ] [ INSPIRE ].
  52. Aglietti Ugo, Duca Vittorio Del, Duhr Claude, Somogyi Gábor, Trócsányi Zoltán, Analytic integration of real-virtual counterterms in NNLO jet cross sections I, 10.1088/1126-6708/2008/09/107
  53. Del Duca Vittorio, Duhr Claude, Nigel Glover E. W., Smirnov Vladimir A., The one-loop pentagon to higher orders in ϵ, 10.1007/jhep01(2010)042
  54. Gehrmann T., Remiddi E., Numerical evaluation of harmonic polylogarithms, 10.1016/s0010-4655(01)00411-8
  55. Maître D., HPL, a Mathematica implementation of the harmonic polylogarithms, 10.1016/j.cpc.2005.10.008
  56. Maître Daniel, Extension of HPL to complex arguments, 10.1016/j.cpc.2011.11.015
  57. Vollinga Jens, Weinzierl Stefan, Numerical evaluation of multiple polylogarithms, 10.1016/j.cpc.2004.12.009
  58. Davydychev A.I., Kalmykov M.Yu., New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams, 10.1016/s0550-3213(01)00095-5
  59. Davydychev A.I., Kalmykov M.Yu., Massive Feynman diagrams and inverse binomial sums, 10.1016/j.nuclphysb.2004.08.020
  60. D. Zagier, Special Values and Functional Equations of Polylogarithms, in L. Lewin ed., Structural Properties of Polylogarithms, AMS, Providence, RI, U.S.A. (1991), appendix A.
  61. Gangl Herbert, Functional equations for higher logarithms, 10.1007/s00029-003-0312-z
  62. A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 .
  63. Goncharov A. B., Spradlin M., Vergu C., Volovich A., Classical Polylogarithms for Amplitudes and Wilson Loops, 10.1103/physrevlett.105.151605
  64. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., An analytic result for the two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep03(2010)099
  65. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep05(2010)084
  66. Caron-Huot S., Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, 10.1007/jhep12(2011)066
  67. Dixon Lance J., Drummond James M., Henn Johannes M., Bootstrapping the three-loop hexagon, 10.1007/jhep11(2011)023
  68. Heslop Paul, Khoze Valentin V., Wilson loops @ 3-loops in special kinematics, 10.1007/jhep11(2011)152
  69. Alday Luis F., Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, An operator product expansion for polygonal null Wilson loops, 10.1007/jhep04(2011)088
  70. Gaiotto Davide, Maldacena Juan, Sever Amit, Vieira Pedro, Pulling the straps of polygons, 10.1007/jhep12(2011)011
  71. Davydychev A. I., Delbourgo R., A geometrical angle on Feynman integrals, 10.1063/1.532513
  72. M. Spradlin and A. Volovich, Symbols of One-Loop Integrals From Mixed Tate Motives, JHEP 11 (2011) 084 [ arXiv:1105.2024 ] [ INSPIRE ].
  73. Dixon Lance J., Drummond James M., Henn Johannes M., The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep06(2011)100
  74. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The massless hexagon integral in D=6 dimensions, 10.1016/j.physletb.2011.07.079
  75. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The one-loop one-mass hexagon integral in D = 6 dimensions, 10.1007/jhep07(2011)064
  76. V. Del Duca, L.J. Dixon, J.M. Drummond, C. Duhr, J.M. Henn and V. A. Smirnov, The one-loop six-dimensional hexagon integral with three massive corners, Phys. Rev. D 84 (2011) 045017 [ arXiv:1105.2011 ] [ INSPIRE ].
  77. S. Buehler and C. Duhr, CHAPLIN - Complex Harmonic Polylogarithms in Fortran, arXiv:1106.5739 [ INSPIRE ].
  78. Alday Luis F., Some analytic results for two-loop scattering amplitudes, 10.1007/jhep07(2011)080
  79. J.A. Lappo-Danilevskij, Mémoires sur la théorie des systémes des équations différentielles linéaires. Vol. II, Travaux Inst. Physico-Math. Stekloff 7 (1935) 5.
  80. Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen., 10.1515/crll.1840.21.74
  81. Ree Rimhak, Lie Elements and an Algebra Associated With Shuffles, 10.2307/1970243
  82. Borwein Jonathan M., Bradley David M., Broadhurst David J., Lisoněk Petr, 10.1090/s0002-9947-00-02616-7
  83. N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina 90 (1909) 123.
  84. L. Lewin, Polylogarithms and associated functions, North-Holland, New York (1981).
  85. Bloch Spencer, Esnault Hélène, Kreimer Dirk, On Motives Associated to Graph Polynomials, 10.1007/s00220-006-0040-2
  86. Bloch Spencer, Kreimer Dirk, Mixed Hodge structures and renormalization in physics, 10.4310/cntp.2008.v2.n4.a1
  87. D. Broadhurst, P. Deligne, email correspondence (1997).
  88. D.J. Broadhurst, Massive three - loop Feynman diagrams reducible to SC ∗ primitives of algebras of the sixth root of unity, Eur. Phys. J. C 8 (1999) 311 [ hep-th/9803091 ] [ INSPIRE ].
  89. Brosnan Patrick, Belkale Prakash, Matroids motives, and a conjecture of Kontsevich, 10.1215/s0012-7094-03-11615-4
  90. Brown Francis, The Massless Higher-Loop Two-Point Function, 10.1007/s00220-009-0740-5
  91. A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives, AMS, Colloquium Publications (2008).
  92. Brown Francis C. S., Multiple zeta values and periods of moduli spaces $\overline{\mathfrak{M}}_{0,n}$, 10.24033/asens.2099
  93. Goncharov A. B., The dihedral Lie algebras and Galois symmetries of $\pi_1^{(l)}(\mathbb{P}-(\{0,\infty\}\cup \mu_N))$, 10.1215/s0012-7094-01-11031-4
  94. Bloch Spencer, Algebraic cycles and the Lie algebra of mixed Tate motives, 10.1090/s0894-0347-1991-1102577-2
  95. Griffing Gary, Dual Lie elements and a derivation for the cofree coassociative coalgebra, 10.1090/s0002-9939-1995-1273493-6
  96. N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris (1972), chapters 2 and 3.
  97. J.R. Rhodes, On the kernel of the symbol map for multiple polylogarithms, Ph.D. Thesis, University of Durham (2012).