User menu

The one-loop one-mass hexagon integral in D = 6 dimensions

Bibliographic reference Del Duca, Vittorio ; Duhr, Claude ; Smirnov, Vladimir A.. The one-loop one-mass hexagon integral in D = 6 dimensions. In: Journal of High Energy Physics, Vol. 2011, no.7, p. 64 (2011)
Permanent URL
  1. Bern Zvi, Dixon Lance, Dunbar David C., Kosower David A., One-loop self-dual and N = 4 super Yang-Mills, 10.1016/s0370-2693(96)01676-0
  2. Del Duca Vittorio, Duhr Claude, Nigel Glover E. W., Smirnov Vladimir A., The one-loop pentagon to higher orders in ϵ, 10.1007/jhep01(2010)042
  3. Kniehl Bernd A., Tarasov Oleg V., Analytic result for the one-loop scalar pentagon integral with massless propagators, 10.1016/j.nuclphysb.2010.03.006
  4. Bern Zvi, Dixon Lance, Kosower David A., Dimensionally-regulated pentagon integrals, 10.1016/0550-3213(94)90398-0
  5. Drummond James M., Henn Johannes M., Trnka Jaroslav, New differential equations for on-shell loop integrals, 10.1007/jhep04(2011)083
  6. Anastasiou Charalampos, Banfi Andrea, Loop lessons from Wilson loops in $ \mathcal{N} = 4 $ supersymmetric Yang-Mills theory, 10.1007/jhep02(2011)064
  7. Drummond James M, Henn Johannes, Smirnov Vladimir A, Sokatchev Emery, Magic identities for conformal four-point integrals, 10.1088/1126-6708/2007/01/064
  8. V. Del Duca, C. Duhr and V.A. Smirnov, The massless hexagon integral in D =6 dimensions, arXiv:1104.2781 [ SPIRES ].
  9. Dixon Lance J., Drummond James M., Henn Johannes M., The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep06(2011)100
  10. Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [ arXiv:0803.1465 ] [ SPIRES ].
  11. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Hexagon Wilson loop = six-gluon MHV amplitude, 10.1016/j.nuclphysb.2009.02.015
  12. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., An analytic result for the two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep03(2010)099
  13. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep05(2010)084
  14. Goncharov A. B., Spradlin M., Vergu C., Volovich A., Classical Polylogarithms for Amplitudes and Wilson Loops, 10.1103/physrevlett.105.151605
  15. C. Duhr, H. Gangl and J. Rhodes, Symbol calculus for polylogarithms and Feynman integrals, in preparation.
  16. Kotikov A.V., Differential equation method. The calculation of N-point Feynman diagrams, 10.1016/0370-2693(91)90536-y
  17. Alday Luis F, Maldacena Juan, Gluon scattering amplitudes at strong coupling, 10.1088/1126-6708/2007/06/064
  18. H. Cheng and T.T. Wu, Expanding Protons: Scattering at High-Energies, MIT press, Cambridge U.S.A. (1987) [ SPIRES ].