User menu

A two-loop octagon Wilson loop in N = 4 SYM

Bibliographic reference Del Duca, Vittorio ; Duhr, Claude ; Smirnov, Vladimir A.. A two-loop octagon Wilson loop in N = 4 SYM. In: Journal of High Energy Physics, Vol. 2010, no.9, p. 15 (2010)
Permanent URL
  1. Alday Luis F, Maldacena Juan, Gluon scattering amplitudes at strong coupling, 10.1088/1126-6708/2007/06/064
  2. Drummond J.M., Korchemsky G.P., Sokatchev E., Conformal properties of four-gluon planar amplitudes and Wilson loops, 10.1016/j.nuclphysb.2007.11.041
  3. Brandhuber Andreas, Heslop Paul, Travaglini Gabriele, MHV amplitudes in super-Yang–Mills and Wilson Loops, 10.1016/j.nuclphysb.2007.11.002
  4. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., On planar gluon amplitudes/Wilson loops duality, 10.1016/j.nuclphysb.2007.11.007
  5. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, 10.1016/j.nuclphysb.2009.10.013
  6. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, 10.1016/j.physletb.2008.03.032
  7. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., Hexagon Wilson loop = six-gluon MHV amplitude, 10.1016/j.nuclphysb.2009.02.015
  8. Bern Z., Czakon M., Kosower D. A., Roiban R., Smirnov V. A., Two-Loop Iteration of Five-PointN=4Super-Yang-Mills Amplitudes, 10.1103/physrevlett.97.181601
  9. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [ arXiv:0803.1465 ] [ SPIRES ].
  10. Anastasiou C., Dixon L., Bern Z., Kosower D. A., Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory, 10.1103/physrevlett.91.251602
  11. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [ hep-th/0505205 ] [ SPIRES ].
  12. Anastasiou C, Brandhuber A, Heslop P, Khoze V.V, Spence B, Travaglini G, Two-loop polygon Wilson loops in 𝒩 = 4 SYM, 10.1088/1126-6708/2009/05/115
  13. Brandhuber Andreas, Heslop Paul, Khoze Valentin V., Travaglini Gabriele, Simplicity of polygon Wilson loops in $$ \mathcal{N} $$ = 4 SYM, 10.1007/jhep01(2010)050
  14. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., An analytic result for the two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep03(2010)099
  15. Del Duca Vittorio, Duhr Claude, Smirnov Vladimir A., The two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM, 10.1007/jhep05(2010)084
  16. J.-H. Zhang, On the two-loop hexagon Wilson loop remainder function in N = 4 SYM, arXiv:1004.1606 [ SPIRES ].
  17. L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, arXiv:0911.4708 [ SPIRES ].
  18. Alday Luis F, Maldacena Juan, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, 10.1088/1126-6708/2009/11/082
  19. Gatheral J.G.M., Exponentiation of eikonal cross sections in nonabelian gauge theories, 10.1016/0370-2693(83)90112-0
  20. Frenkel J., Taylor J.C., Non-abelian eikonal exponentiation, 10.1016/0550-3213(84)90294-3
  21. Bern Zvi, Dixon Lance, Dunbar David C., Kosower David A., One-loop n-point gauge theory amplitudes, unitarity and collinear limits, 10.1016/0550-3213(94)90179-1
  22. Korchemskaya I.A., Korchemsky G.P., On light-like Wilson loops, 10.1016/0370-2693(92)91895-g
  23. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [ arXiv:0809.1822 ] [ SPIRES ].
  24. V.S. Fadin and L.N. Lipatov, High-energy production of gluons in a quasimulti Regge kinematics, JETP Lett. 49 (1989) 352 [Yad. Fiz. 50 (1989) 1141] [ SPIRES ].
  25. V. Del Duca, Real next-to-leading corrections to the multigluon amplitudes in the helicity formalism, Phys. Rev. D 54 (1996) 989 [ hep-ph/9601211 ] [ SPIRES ].
  26. C. Duhr, New techniques in QCD, Ph.D .thesis, Université Catholique de Louvain, Belgium (2009).
  27. Smirnov V.A., Analytical result for dimensionally regularized massless on-shell double box, 10.1016/s0370-2693(99)00777-7
  28. Tausk J.B., Non-planar massless two-loop Feynman diagrams with four on-shell legs, 10.1016/s0370-2693(99)01277-0
  29. Smirnov Vladimir A., Introduction, Springer Tracts in Modern Physics (2005) ISBN:9783540239338 p.1-9, 10.1007/978-3-540-44703-0_1
  30. V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006), pag. 283 [ SPIRES ].
  31. Czakon M., Automatized analytic continuation of Mellin–Barnes integrals, 10.1016/j.cpc.2006.07.002
  32. Smirnov A. V., Smirnov V. A., On the resolution of singularities of multiple Mellin–Barnes integrals, 10.1140/epjc/s10052-009-1039-6
  33. M. Czakon, MBasymptotics, .
  34. D.A. Kosower, barnesroutines, .
  35. Smirnov A.V., Tentyukov M.N., Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), 10.1016/j.cpc.2008.11.006
  36. A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, arXiv:0912.0158 [ SPIRES ].
  37. Moch Sven, Uwer Peter, Weinzierl Stefan, Nested sums, expansion of transcendental functions, and multiscale multiloop integrals, 10.1063/1.1471366
  38. Moch S., Uwer P., -XSummer- Transcendental functions and symbolic summation in Form, 10.1016/j.cpc.2005.12.014
  39. Jegerlehner F., Kalmykov M.Yu., Veretin O.,  vs. pole masses of gauge bosons II: two-loop electroweak fermion corrections, 10.1016/s0550-3213(03)00177-9
  40. Kalmykov Mikhail Yu, Ward Bennie F.L, Yost Scott A, Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ε-expansion of generalized hypergeometric functions with one half-integer value of parameter, 10.1088/1126-6708/2007/10/048
  41. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, arXiv:1006.2788 [ SPIRES ].