User menu

Reducing systems protecting the bacterial cell envelope from oxidative damage

Bibliographic reference Arts, Isabelle ; Gennaris, Alexandra ; Collet, Jean-François. Reducing systems protecting the bacterial cell envelope from oxidative damage. In: FEBS Letters, Vol. 589, no.14, p. 1559-1568 (2015)
Permanent URL
  1. Roos Goedele, Messens Joris, Protein sulfenic acid formation: From cellular damage to redox regulation, 10.1016/j.freeradbiomed.2011.04.031
  2. Imlay James A., Cellular Defenses against Superoxide and Hydrogen Peroxide, 10.1146/annurev.biochem.77.061606.161055
  3. Bedard K., Krause K.-H., The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, 10.1152/physrev.00044.2005
  4. Bae Yun Soo, Oh Hyunjin, Rhee Sue Goo, Yoo Young Do, Regulation of reactive oxygen species generation in cell signaling, 10.1007/s10059-011-0276-3
  5. Sevier Carolyn S., Kaiser Chris A., Ero1 and redox homeostasis in the endoplasmic reticulum, 10.1016/j.bbamcr.2007.12.011
  6. Silhavy Thomas J., Ruiz Natividad, Kahne Daniel, Advances in understanding bacterial outer-membrane biogenesis, 10.1038/nrmicro1322
  7. Van Wielink John E., Duine Johannis A., How big is the periplasmic space?, 10.1016/0968-0004(90)90208-s
  8. Goemans Camille, Denoncin Katleen, Collet Jean-François, Folding mechanisms of periplasmic proteins, 10.1016/j.bbamcr.2013.10.014
  9. Leverrier Pauline, Vertommen Didier, Collet Jean-François, Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope ofEscherichia coli, 10.1002/pmic.200900461
  10. Messens Joris, Collet Jean-Francois, Van Belle Karolien, Brosens Elke, Loris Remy, Wyns Lode, The Oxidase DsbA Folds a Protein with a Nonconsecutive Disulfide, 10.1074/jbc.m705236200
  11. Gilbert, Adv. Enzymol. Relat. Areas Mol. Biol., 63, 69 (1990)
  12. Holmgren, J. Biol. Chem., 257, 6926 (1982)
  13. Hwang C, Sinskey A., Lodish H., Oxidized redox state of glutathione in the endoplasmic reticulum, 10.1126/science.1523409
  14. Collet Jean-Francois, Messens Joris, Structure, Function, and Mechanism of Thioredoxin Proteins, 10.1089/ars.2010.3114
  15. Bardwell James C.A., McGovern Karen, Beckwith Jon, Identification of a protein required for disulfide bond formation in vivo, 10.1016/0092-8674(91)90532-4
  16. Wunderlich Martina, Glockshuber Rudi, Redox properties of protein disulfide isomerase (dsba) fromescherichia coli, 10.1002/pro.5560020503
  17. Zapun Andre, Bardwell James C. A., Creighton Thomas E., The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo, 10.1021/bi00070a016
  18. Bardwell J. C., Lee J. O., Jander G., Martin N., Belin D., Beckwith J., A pathway for disulfide bond formation in vivo., 10.1073/pnas.90.3.1038
  19. Bader Martin W., Xie Tong, Yu Chang-An, Bardwell James C. A., Disulfide Bonds Are Generated by Quinone Reduction, 10.1074/jbc.m003850200
  20. Bader Martin, Muse Wilson, Ballou David P, Gassner Christian, Bardwell James C.A, Oxidative Protein Folding Is Driven by the Electron Transport System, 10.1016/s0092-8674(00)81016-8
  21. Kadokura Hiroshi, Beckwith Jon, Detecting Folding Intermediates of a Protein as It Passes through the Bacterial Translocation Channel, 10.1016/j.cell.2009.07.030
  22. Shevchik, EMBO J., 13, 2007 (1994)
  23. Rietsch A., Belin D., Martin N., Beckwith J., An in vivo pathway for disulfide bond isomerization in Escherichia coli, 10.1073/pnas.93.23.13048
  24. Metcalf Peter, McCarthy Andrew A., Haebel Peter W., Törrönen Anneli, Rybin Vladimir, Baker Edward N., 10.1038/73295
  25. Hiniker Annie, Bardwell James C. A., In VivoSubstrate Specificity of Periplasmic Disulfide Oxidoreductases, 10.1074/jbc.m311391200
  26. Kadokura H., Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, 10.1126/science.1091724
  27. Leichert Lars I, Jakob Ursula, Protein Thiol Modifications Visualized In Vivo, 10.1371/journal.pbio.0020333
  28. Vertommen, Mol. Microbiol., 67, 336 (2008)
  29. Berkmen M., Boyd D., Beckwith J., The Nonconsecutive Disulfide Bond of Escherichia coli Phytase (AppA) Renders It Dependent on the Protein-disulfide Isomerase, DsbC, 10.1074/jbc.m411774200
  30. Denoncin Katleen, Vertommen Didier, Paek Eunok, Collet Jean-François, The Protein-disulfide Isomerase DsbC Cooperates with SurA and DsbA in the Assembly of the Essential β-Barrel Protein LptD, 10.1074/jbc.m110.119321
  31. Leverrier Pauline, Declercq Jean-Paul, Denoncin Katleen, Vertommen Didier, Hiniker Annie, Cho Seung-Hyun, Collet Jean-François, Crystal Structure of the Outer Membrane Protein RcsF, a New Substrate for the Periplasmic Protein-disulfide Isomerase DsbC, 10.1074/jbc.m111.224865
  32. Cho Seung-Hyun, Szewczyk Joanna, Pesavento Christina, Zietek Matylda, Banzhaf Manuel, Roszczenko Paula, Asmar Abir, Laloux Géraldine, Hov Ann-Kristin, Leverrier Pauline, Van der Henst Charles, Vertommen Didier, Typas Athanasios, Collet Jean-François, Detecting Envelope Stress by Monitoring β-Barrel Assembly, 10.1016/j.cell.2014.11.045
  33. Katzen Federico, Beckwith Jon, Transmembrane Electron Transfer by the Membrane Protein DsbD Occurs via a Disulfide Bond Cascade, 10.1016/s0092-8674(00)00180-x
  34. Rietsch A, Bessette P, Georgiou G, Beckwith J, Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin., 10.1128/jb.179.21.6602-6608.1997
  35. Stewart E. J., Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli, 10.1093/emboj/18.21.5963
  36. Cho Seung-Hyun, Collet Jean-Francois, Many Roles of the Bacterial Envelope Reducing Pathways, 10.1089/ars.2012.4962
  37. Lynch, J. Biol. Chem., 253, 4697 (1978)
  38. Korshunov Sergei S., Imlay James A., A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria, 10.1046/j.1365-2958.2002.02719.x
  39. Yost, J. Biol. Chem., 248, 4905 (1973)
  40. Keele, J. Biol. Chem., 245, 6176 (1970)
  41. Furukawa Yoshiaki, O'halloran Thomas V., Posttranslational Modifications in Cu,Zn-Superoxide Dismutase and Mutations Associated with Amyotrophic Lateral Sclerosis, 10.1089/ars.2006.8.847
  42. Furukawa Yoshiaki, Torres Andrew S, O'Halloran Thomas V, Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS, 10.1038/sj.emboj.7600276
  43. Benov, J. Biol. Chem., 269, 25310 (1994)
  44. Korshunov S., Imlay J. A., Detection and Quantification of Superoxide Formed within the Periplasm of Escherichia coli, 10.1128/jb.00554-06
  45. De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., McCord J. M., Dinauer M. C., Libby S. J., Vazquez-Torres A., Xu Y., Fang F. C., Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase, 10.1073/pnas.94.25.13997
  46. Seaver L. C., Imlay J. A., Alkyl Hydroperoxide Reductase Is the Primary Scavenger of Endogenous Hydrogen Peroxide in Escherichia coli, 10.1128/jb.183.24.7173-7181.2001
  47. Baker Laura M. S., Poole Leslie B., Catalytic Mechanism of Thiol Peroxidase fromEscherichia coli : SULFENIC ACID FORMATION AND OVEROXIDATION OF ESSENTIAL CYS61, 10.1074/jbc.m209888200
  48. Jeong Woojin, Cha Mee-Kyung, Kim Il-Han, Thioredoxin-dependent Hydroperoxide Peroxidase Activity of Bacterioferritin Comigratory Protein (BCP) as a New Member of the Thiol-specific Antioxidant Protein (TSA)/Alkyl Hydroperoxide Peroxidase C (AhpC) Family, 10.1074/jbc.275.4.2924
  49. Claiborne, J. Biol. Chem., 254, 4245 (1979)
  50. Claiborne, J. Biol. Chem., 254, 11664 (1979)
  51. Christman M. F., Storz G., Ames B. N., OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins., 10.1073/pnas.86.10.3484
  52. Schellhorn H E, Hassan H M, Transcriptional regulation of katE in Escherichia coli K-12., 10.1128/jb.170.9.4286-4292.1988
  53. Cha M.-K., Kim H.-K., Kim I.-H., Thioredoxin-linked "Thiol Peroxidase" from Periplasmic Space of Escherichia coli, 10.1074/jbc.270.48.28635
  54. Tao Kazuyuki, Subcellular localization andin vivooxidation–reduction kinetics of thiol peroxidase inEscherichia coli, 10.1111/j.1574-6968.2008.01372.x
  55. Cho S.-H., Parsonage D., Thurston C., Dutton R. J., Poole L. B., Collet J.-F., Beckwith J., A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope, 10.1128/mbio.00291-11
  56. Davies Michael J., The oxidative environment and protein damage, 10.1016/j.bbapap.2004.08.007
  57. Ying Jia, Clavreul Nicolas, Sethuraman Mahadevan, Adachi Takeshi, Cohen Richard A., Thiol oxidation in signaling and response to stress: Detection and quantification of physiological and pathophysiological thiol modifications, 10.1016/j.freeradbiomed.2007.07.014
  58. Lo Conte Mauro, Carroll Kate S., The Redox Biochemistry of Protein Sulfenylation and Sulfinylation, 10.1074/jbc.r113.467738
  59. Starke David W., Chock P. Boon, Mieyal John J., Glutathione-Thiyl Radical Scavenging and Transferase Properties of Human Glutaredoxin (Thioltransferase) : POTENTIAL ROLE IN REDOX SIGNAL TRANSDUCTION, 10.1074/jbc.m210434200
  60. Dutton R. J., Boyd D., Berkmen M., Beckwith J., Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation, 10.1073/pnas.0804621105
  61. Leonard Stephen E., Reddie Khalilah G., Carroll Kate S., Mining the Thiol Proteome for Sulfenic Acid Modifications Reveals New Targets for Oxidation in Cells, 10.1021/cb900105q
  62. Depuydt M., Leonard S. E., Vertommen D., Denoncin K., Morsomme P., Wahni K., Messens J., Carroll K. S., Collet J.-F., A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation, 10.1126/science.1179557
  63. Mainardi Jean-Luc, Hugonnet Jean-Emmanuel, Rusconi Filippo, Fourgeaud Martine, Dubost Lionel, Moumi Angèle Nguekam, Delfosse Vanessa, Mayer Claudine, Gutmann Laurent, Rice Louis B., Arthur Michel, Unexpected Inhibition of Peptidoglycan LD-Transpeptidase fromEnterococcus faeciumby the β-Lactam Imipenem, 10.1074/jbc.m704286200
  64. Zapun Andre, Missiakas Dominique, Raina Satish, Creighton Thomas E., Structural and Functional Characterization of DsbC, a Protein Involved in Disulfide Bond Formation in Escherichia coli, 10.1021/bi00015a019
  65. Atkinson Holly J., Babbitt Patricia C., An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations, 10.1371/journal.pcbi.1000541
  66. Denoncin Katleen, Vertommen Didier, Arts Isabelle S., Goemans Camille V., Rahuel-Clermont Sophie, Messens Joris, Collet Jean-François, A New Role forEscherichia coliDsbC Protein in Protection against Oxidative Stress, 10.1074/jbc.m114.554055
  67. Hogg Robert W., L-arabinose transport and the L-arabinose binding protein of escherichia coli, 10.1002/jss.400060314
  68. Horazdovsky Bruce F., Hogg Robert W., High-affinity l-arabinose transport operon, 10.1016/0022-2836(87)90606-1
  69. Scripture J.Benjamin, Voelker Carolyn, Miller Sally, O'Donnell Richard T., Polgar Leslie, Rade Jeffrey, Horazdovsky Bruce F., Hogg Robert W., High-affinity l-arabinose transport operon, 10.1016/0022-2836(87)90607-3
  70. Horazdovsky B F, Hogg R W, Genetic reconstitution of the high-affinity L-arabinose transport system., 10.1128/jb.171.6.3053-3059.1989
  71. Reddie Khalilah G, Carroll Kate S, Expanding the functional diversity of proteins through cysteine oxidation, 10.1016/j.cbpa.2008.07.028
  72. Pattison David I., Davies Michael J., Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds, 10.1021/tx0155451
  73. Vogt Walther, Oxidation of methionyl residues in proteins: Tools, targets, and reversal, 10.1016/0891-5849(94)00158-g
  74. Tanner John J., Parsons Zachary D., Cummings Andrea H., Zhou Haiying, Gates Kent S., Redox Regulation of Protein Tyrosine Phosphatases: Structural and Chemical Aspects, 10.1089/ars.2010.3611
  75. Vázquez-Torres Andrés, Redox Active Thiol Sensors of Oxidative and Nitrosative Stress, 10.1089/ars.2012.4522
  76. Groitl Bastian, Jakob Ursula, Thiol-based redox switches, 10.1016/j.bbapap.2014.03.007
  77. Ezraty Benjamin, Grimaud Régis, Hassouni Mohammed El, Moinier Daniéle, Barras Frédéric, Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli, 10.1038/sj.emboj.7600172
  78. Driessen Arnold J.M., Nouwen Nico, Protein Translocation Across the Bacterial Cytoplasmic Membrane, 10.1146/annurev.biochem.77.061606.160747
  79. Rosen H., Klebanoff S. J., Wang Y., Brot N., Heinecke J. W., Fu X., Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils, 10.1073/pnas.0909464106
  80. Drazic Adrian, Miura Haruko, Peschek Jirka, Le Yan, Bach Nina C., Kriehuber Thomas, Winter Jeannette, Methionine oxidation activates a transcription factor in response to oxidative stress, 10.1073/pnas.1300578110
  81. Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R., Methionine residues as endogenous antioxidants in proteins, 10.1073/pnas.93.26.15036
  82. Luo S., Levine R. L., Methionine in proteins defends against oxidative stress, 10.1096/fj.08-118414
  83. Brot N., Weissbach L., Werth J., Weissbach H., Enzymatic reduction of protein-bound methionine sulfoxide., 10.1073/pnas.78.4.2155
  84. Grimaud Régis, Ezraty Benjamin, Mitchell Jennifer K., Lafitte Daniel, Briand Claudette, Derrick Peter J., Barras Frédéric, Repair of Oxidized Proteins : IDENTIFICATION OF A NEW METHIONINE SULFOXIDE REDUCTASE, 10.1074/jbc.m105509200
  85. Boschi-Muller Sandrine, Gand Adeline, Branlant Guy, The methionine sulfoxide reductases: Catalysis and substrate specificities, 10.1016/
  86. Weissbach Herbert, Resnick Lionel, Brot Nathan, Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage, 10.1016/j.bbapap.2004.10.004
  87. Zhang Xing-Hai, Weissbach Herbert, Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases, 10.1111/j.1469-185x.2008.00042.x
  88. Alamuri Praveen, Maier Robert J., Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori : Msr in H. pylori, 10.1111/j.1365-2958.2004.04190.x
  89. Hassouni M. E., Chambost J. P., Expert D., Van Gijsegem F., Barras F., The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi, 10.1073/pnas.96.3.887
  90. Zhao C., Hartke A., La Sorda M., Posteraro B., Laplace J.-M., Auffray Y., Sanguinetti M., Role of Methionine Sulfoxide Reductases A and B of Enterococcus faecalis in Oxidative Stress and Virulence, 10.1128/iai.00165-10
  91. Denkel Luisa A., Horst Sarah A., Rouf Syed Fazle, Kitowski Vera, Böhm Oliver M., Rhen Mikael, Jäger Timo, Bange Franz-Christoph, Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium, 10.1371/journal.pone.0026974
  92. Romsang A., Atichartpongkul S., Trinachartvanit W., Vattanaviboon P., Mongkolsuk S., Gene Expression and Physiological Role of Pseudomonas aeruginosa Methionine Sulfoxide Reductases during Oxidative Stress, 10.1128/jb.00167-13
  93. Dhandayuthapani S., Blaylock M. W., Bebear C. M., Rasmussen W. G., Baseman J. B., Peptide Methionine Sulfoxide Reductase (MsrA) Is a Virulence Determinant in Mycoplasma genitalium, 10.1128/jb.183.19.5645-5650.2001
  94. Pang Yun Yun, Schwartz Jamie, Bloomberg Sarah, Boyd Jeffrey M., Horswill Alexander R., Nauseef William M., Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils, 10.1159/000355915
  95. Wizemann T. M., Moskovitz J., Pearce B. J., Cundell D., Arvidson C. G., So M., Weissbach H., Brot N., Masure H. R., Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens., 10.1073/pnas.93.15.7985
  96. Mei Ji-Min, Nourbakhsh Fahimeh, Ford Charles W., Holden David W., Identification ofStaphylococcus aureusvirulence genes in a murine model of bacteraemia using signature-tagged mutagenesis, 10.1046/j.1365-2958.1997.5911966.x
  97. Das Kishore, De la Garza Georgina, Maffi Shivani, Saikolappan Sankaralingam, Dhandayuthapani Subramanian, Methionine Sulfoxide Reductase A (MsrA) Deficient Mycoplasma genitalium Shows Decreased Interactions with Host Cells, 10.1371/journal.pone.0036247
  98. Moskovitz J, Rahman M A, Strassman J, Yancey S O, Kushner S R, Brot N, Weissbach H, Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage., 10.1128/jb.177.3.502-507.1995
  99. John G. S., Brot N., Ruan J., Erdjument-Bromage H., Tempst P., Weissbach H., Nathan C., Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates, 10.1073/pnas.161295398
  100. Singh, Microbiology, 147, 3037 (2001)
  101. Vattanaviboon P., Seeanukun C., Whangsuk W., Utamapongchai S., Mongkolsuk S., Important Role for Methionine Sulfoxide Reductase in the Oxidative Stress Response of Xanthomonas campestris pv. phaseoli, 10.1128/jb.187.16.5831-5836.2005
  102. Lee Warren L., Gold Benjamin, Darby Crystal, Brot Nathan, Jiang Xiuju, de Carvalho Luiz Pedro S., Wellner Daniel, St. John Gregory, Jacobs Jr William R., Nathan Carl, Mycobacterium tuberculosisexpresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite, 10.1111/j.1365-2958.2008.06548.x
  103. Atack J. M., Kelly D. J., Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni, 10.1099/mic.0.2008/019711-0
  104. Lin Z., Johnson L. C., Weissbach H., Brot N., Lively M. O., Lowther W. T., Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function, 10.1073/pnas.0703774104
  105. Drazic Adrian, Winter Jeannette, The physiological role of reversible methionine oxidation, 10.1016/j.bbapap.2014.01.001
  106. Kim Hwa-Young, Gladyshev Vadim N, Different Catalytic Mechanisms in Mammalian Selenocysteine- and Cysteine-Containing Methionine-R-Sulfoxide Reductases, 10.1371/journal.pbio.0030375
  107. Kim Hwa-Young, Gladyshev Vadim N., Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals, 10.1042/bj20070929
  108. Skaar E. P., Tobiason D. M., Quick J., Judd R. C., Weissbach H., Etienne F., Brot N., Seifert H. S., The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species, 10.1073/pnas.152334799
  109. Wu Junzhu, Neiers Fabrice, Boschi-Muller Sandrine, Branlant Guy, The N-terminal Domain of PILB fromNeisseria meningitidisIs a Disulfide Reductase That Can Recycle Methionine Sulfoxide Reductases, 10.1074/jbc.m500385200
  110. Ranaivoson Fanomezana M., Kauffmann Brice, Neiers Fabrice, Wu Junzhu, Boschi-Muller Sandrine, Panjikar Santosh, Aubry André, Branlant Guy, Favier Frédérique, The X-ray Structure of the N-terminal Domain of PILB from Neisseria meningitidis Reveals a Thioredoxin-fold, 10.1016/j.jmb.2006.02.025
  111. Brot Nathan, Collet Jean-François, Johnson Lynnette C., Jönsson Thomas J., Weissbach Herbert, Lowther W. Todd, The Thioredoxin Domain ofNeisseria gonorrhoeaePilB Can Use Electrons from DsbD to Reduce Downstream Methionine Sulfoxide Reductases, 10.1074/jbc.m604971200
  112. Saleh Malek, Bartual Sergio G., Abdullah Mohammed R., Jensch Inga, Asmat Tauseef M., Petruschka Lothar, Pribyl Thomas, Gellert Manuela, Lillig Christopher H., Antelmann Haike, Hermoso Juan A., Hammerschmidt Sven, Molecular architecture ofStreptococcus pneumoniaesurface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence : Pneumococcal surface oxidative resistance system, 10.1002/emmm.201202435
  113. Farshchi Andisi V., Hinojosa C. A., de Jong A., Kuipers O. P., Orihuela C. J., Bijlsma J. J. E., Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress, 10.1128/iai.05563-11
  114. Beloin Christophe, Valle Jaione, Latour-Lambert Patricia, Faure Philippe, Kzreminski Mickaël, Balestrino Damien, Haagensen Janus A. J., Molin Søren, Prensier Gérard, Arbeille Brigitte, Ghigo Jean-Marc, Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression : Mature biofilm formation in E. coli, 10.1046/j.1365-2958.2003.03865.x
  115. Fabianek, J. Bacteriol., 180, 1947 (1998)
  116. Page M. Dudley, Ferguson Stuart J., Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c- and aa3-type cytochrome biogenesis; evidence for a reductase role in vivo, 10.1046/j.1365-2958.1997.4061775.x
  117. Stirnimann Christian U., Rozhkova Anna, Grauschopf Ulla, Grütter Markus G., Glockshuber Rudi, Capitani Guido, Structural Basis and Kinetics of DsbD-Dependent Cytochrome c Maturation, 10.1016/j.str.2005.04.014
  118. Stirnimann C. U., Grütter M. G., Glockshuber R., Capitani G., nDsbD: a redox interaction hub in the Escherichia coli periplasm, 10.1007/s00018-006-6055-1