User menu

A Second-Gradient Theory of Dilute Suspensions of Flexible Rods in a Newtonian Fluid

Bibliographic reference Abisset-Chavanne, Emmanuelle ; Férec, Julien ; Ausias, Gilles ; Cueto, Elias ; Chinesta, Francisco ; et. al. A Second-Gradient Theory of Dilute Suspensions of Flexible Rods in a Newtonian Fluid. In: Archives of Computational Methods in Engineering, Vol. 22, p. 511-527 (2015)
Permanent URL
  1. Advani Suresh G., Tucker Charles L., The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites, 10.1122/1.549945
  2. Advani Suresh G., Tucker Charles L., Closure approximations for three‐dimensional structure tensors, 10.1122/1.550133
  3. Advani S (ed) (1994) Flow and rheology in polymer composites manufacturing. Elsevier, Amsterdam
  4. Azaiez J., Chiba K., Chinesta F., Poitou A., State-of-the-Art on numerical simulation of fiber-reinforced thermoplastic forming processes, 10.1007/bf02736650
  5. Batchelor G. K., The stress system in a suspension of force-free particles, 10.1017/s0022112070000745
  6. Bird RB, Crutiss CF, Armstrong RC, Hassager O (1987) Dynamic of polymeric liquid. Kinetic Theory, vol 2. Wiley, New York
  7. Chiba Kunji, Ammar Amine, Chinesta Francisco, On the fiber orientation in steady recirculating flows involving short fibers suspensions, 10.1007/s00397-004-0422-3
  8. Cueto Elias, Monge Rosa, Chinesta Francisco, Poitou Arnaud, Alfaro Iciar, Mackley Malcolm R., Rheological modeling and forming process simulation of CNT nanocomposites, 10.1007/s12289-009-0659-6
  9. Cruz C., Illoul L., Chinesta F., Régnier G., Effects of a bent structure on the linear viscoelastic response of diluted carbon nanotube suspensions, 10.1007/s00397-010-0487-0
  10. Cruz C., Chinesta F., Régnier G., Review on the Brownian Dynamics Simulation of Bead-Rod-Spring Models Encountered in Computational Rheology, 10.1007/s11831-012-9072-2
  11. Doi M, Edwards SF (1987) The theory of polymer dynamics. Clarendon Press, Oxford
  12. Dumont P.J.J., Le Corre S., Orgéas L., Favier D., A numerical analysis of the evolution of bundle orientation in concentrated fibre-bundle suspensions, 10.1016/j.jnnfm.2009.03.001
  13. Dupret f., Verleye V., Modelling the flow of fiber suspensions in narrow gaps, Rheology Series (1999) ISBN:9780444826794 p.1347-1398, 10.1016/s0169-3107(99)80020-3
  14. Eringen C (2002) Nonlocal continuum field theories. Springer, Berlin
  15. Folgar Fransisco, Tucker Charles L., Orientation Behavior of Fibers in Concentrated Suspensions, 10.1177/073168448400300201
  16. Fried Eliot, Gurtin Morton E., Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales, 10.1007/s00205-006-0015-7
  17. Hand George L., A theory of anisotropic fluids, 10.1017/s0022112062000476
  18. Hinch E. J., Leal L. G., The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, 10.1017/s002211207200271x
  19. Hinch E. J., Leal L. G., Constitutive equations in suspension mechanics. Part 1. General formulation, 10.1017/s0022112075002698
  20. Hinch E. J., Leal L. G., Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, 10.1017/s0022112076003200
  21. Hinch E. J., The distortion of a flexible inextensible thread in a shearing flow, 10.1017/s002211207600181x
  22. Jeffery G. B., The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, 10.1098/rspa.1922.0078
  23. Keunings R., On the Peterlin approximation for finitely extensible dumbbells, 10.1016/s0377-0257(96)01497-8
  24. Keunings R (2004) Micro-macro methods for the multiscale simulation viscoelastic flow using molecular models of kinetic theory. In: Binding DM, Walters K (eds) Rheology reviews. British Society of Rheology, Glasgow, pp 67–98
  25. Kim Tae-Yeon, Dolbow John, Fried Eliot, A numerical method for a second-gradient theory of incompressible fluid flow, 10.1016/
  26. Kröger Martin, Ammar Amine, Chinesta Francisco, Consistent closure schemes for statistical models of anisotropic fluids, 10.1016/j.jnnfm.2007.05.007
  27. Ma Anson W. K., Chinesta Francisco, Mackley Malcolm R., Ammar Amine, The rheological modelling of carbon nanotube (CNT) suspensions in steady shear flows, 10.1007/s12289-008-0372-x
  28. Ma W. K. A., Chinesta F., Ammar A., Mackley M. R., Rheological modeling of carbon nanotube aggregate suspensions, 10.1122/1.2982932
  29. Ma A. W. K., Chinesta F., Mackley M. R., The rheology and modeling of chemically treated carbon nanotubes suspensions, 10.1122/1.3093105
  30. Petrie Christopher J.S., The rheology of fibre suspensions, 10.1016/s0377-0257(99)00069-5
  31. Pruliere Etienne, Ammar Amine, El Kissi Nadia, Chinesta Francisco, Recirculating Flows Involving Short Fiber Suspensions: Numerical Difficulties and Efficient Advanced Micro-Macro Solvers, 10.1007/s11831-008-9027-9
  32. Shanker Ravi, Gillespie J. W., Güçeri S. I., On the effect of nonhomogeneous flow fields on the orientation distribution and rheology of fiber suspensions : Effect of Nonhomogeneous Flow Fields, 10.1002/pen.760310304
  33. Shanker R (1991) The effect of non homogeneous flow fields and hydrodynamic interactions on the rheology of fiber suspensions, PhD dissertation, University of Delaware
  34. Strautins Uldis, Latz Arnulf, Flow-driven orientation dynamics of semiflexible fiber systems, 10.1007/s00397-007-0194-7
  35. Tucker Charles L., Flow regimes for fiber suspensions in narrow gaps, 10.1016/0377-0257(91)80017-e