User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Determination of the main Lunar waves generated by the third degree tidal potential and validity of the corresponding body tides models

  1. Baker Trevor F., Bos Machiel S., Validating Earth and ocean tide models using tidal gravity measurements, 10.1046/j.1365-246x.2003.01863.x
  2. Boy Jean-Paul, Llubes Muriel, Ray Richard, Hinderer Jacques, Florsch Nicolas, Rosat Séverine, Lyard Florent, Letellier Thierry, Non-linear oceanic tides observed by superconducting gravimeters in Europe, 10.1016/j.jog.2004.07.017
  3. Cartwright D. E., A subharmonic lunar tide in the seas off Western Europe, 10.1038/257277a0
  4. CARTWRIGHT D. E., Anomalous M1 tide at Lagos, 10.1038/263217b0
  5. Crossley D, Hinderer J, Casula G, Francis O, Hsu HT, Imanishi Y, Jentzsch G, Kääriaïnen J, Merriam J, Meurers B, Neumeyer J, Richter B, Shibuya K, Sato T, Van Dam T (1999) Network of superconducting gravimeters benefits a number of disciplines. EOS 80, 11:121/125-126
  6. Dehant Véronique, Tidal parameters for an inelastic Earth, 10.1016/0031-9201(87)90134-8
  7. Dehant V., Defraigne P., Wahr J. M., Tides for a convective Earth, 10.1029/1998jb900051
  8. Dittfeld HJ (1991) Analysis of third degree waves with diurnal and semidiurnal frequencies. Bull Inf Marées Terrestres 111:8053–8061.
  9. Ducarme B, Melchior P (1998) Eight lunar nodal waves and third degree waves derived from the 14 year series of observations with the superconducting gravimeter GWR/T3 in Brussels. In: Proceeding 13th International Symposium on Earth Tides, Brussels July 22–25, 1997. Observatoire Royal de Belgique, Série Géophysique, Brussels, pp 347–356
  10. Ducarme B, Somerhausen A (1997) Tidal gravity recording at Brussels with a SCINTREX CG3-M gravimeter. Bull Inf Marées Terrestres 126:9611–9634.
  11. Ducarme B, Sun HP (2001) Tidal gravity results from GGP network in connection with tidal loading and Earth response. In: Proceeding 14th International Symposium on Earth Tides. J Geod Soc Jpn 47(1): 308–315
  12. Ducarme B, Sun HP, Xu JQ (2002) New investigation of tidal gravity results from GGP network. Bull Inf Marées Terrestres 136:10761–10776.
  13. Ducarme B, Vandercoilden L, Venedikov AP (2006) Estimation of the precision by the tidal analysis programs ETERNA and VAV. Bull Inf Marées Terrestres 141:11189–11200.
  14. Ducarme Bernard, Sun He-Ping, Xu Jian-Qiao, Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network, 10.1007/s00190-006-0098-9
  15. Ducarme B, Zhou JC, Sun HP (2007b) Evaluation of M4 ocean tide loading inside the GGP network. Bull Inf Marées Terrestres 143:11473–11488.
  16. Ducarme B, Rosat S, Vandercoilden L, Xu JQ, Sun HP (2009) European tidal gravity observations: comparison with Earth tides models and estimation of the free core nutation (FCN) parameters. In: Sideris MG (ed) Proceedings of the 2007 IAG General Assembly, Perugia, Italy, July 2–13, 2007. Observing our changing Earth. Springer, International Association of Geodesy Symposia 133:523–532. doi: 10.1007/s978-3-540-85426-5
  17. Farrell W. E., Deformation of the Earth by surface loads, 10.1029/rg010i003p00761
  18. Francis O (1997) Calibration of the C021 superconducting gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements. In: Segawa et al (eds) International association of Geodesy Symp., Gravity, Geoid and Marine Geodesy 117:212–219
  19. Hartmann T, Wenzel HG (1995) Catalogue HW95 of the tide generating potential. Bull Inf Marées Terrestres 123:9278–9301.
  20. Jeffreys H (1957) Theoretical values of the bodily tide numbers. Bull Inf Marées Terrestres 3:29.
  21. Kangieser E, Torge W (1981) Calibration of LaCoste-Romberg gravity meters. Model G and D. Bull Inf Bur Grav Int 49: 50–63
  22. Mathews PM (2001) Love numbers and gravimetric factor for diurnal tides. In: Proceeding 14th International Symposium Earth Tides. J Geod Soc Jpn 47(1): 231–236
  23. Melchior P (1983) The tides of the Planet Earth. Pergamon Press, Oxford
  24. Melchior P., Venedikov A., Derivation of the wave M3 (8h.279) from the periodic tidal deformations of the earth, 10.1016/0031-9201(68)90032-0
  25. Melchior P., Ducarme B., Francis O., The response of the Earth to tidal body forces described by second- and third-degree spherical harmonics as derived from a 12 year series of measurements with the superconducting gravimeter GWR/T3 in Brussels, 10.1016/0031-9201(95)03073-5
  26. Molodenskii MS (1953) Elastic tides, free nutation and some problems of the Earth’s structure. Acad Sc URSS Travaux Inst Geoph 19(146): 3–52
  27. Molodenskii MS, Kramer MV (1961) Les nombres de Love pour les marées terrestres statiques des 2ème et 3ème ordres. Acad Sc URSS, Inst Phys. De la Terre O.Y. Schmidt (Bull. Inf. Marées Terrestres, 47, 1967, 1935–1950. )
  28. Platzman George W., Normal Modes of the Atlantic and Indian Oceans, 10.1175/1520-0485(1975)005<0201:nmotaa>;2
  29. Platzman George W., Normal Modes of the World Ocean. Part IV: Synthesis of Diurnal and Semidiurnal Tides, 10.1175/1520-0485(1984)014<1532:nmotwo>;2
  30. Ray Richard D., Resonant Third-Degree Diurnal Tides in the Seas off Western Europe, 10.1175/1520-0485(2001)031<3581:rtddti>;2
  31. SAITO Masanori, Some problems of static deformation of the earth., 10.4294/jpe1952.22.123
  32. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D. Reidel Publishing Company, Tokyo
  33. Takeuchi Hitoshi, On the Earth tide of the compressible Earth of variable density and elasticity, 10.1029/tr031i005p00651
  34. Tamura Y (1987) A harmonic development of the tide-generating potential. Bull Inf Marées Terrestres 99:6813–6855.
  35. Van Camp Michel, Wenzel H. -G., Schott P., Vauterin P., Francis O., Accurate transfer function determination for superconducting gravimeters, 10.1029/1999gl010495
  36. Venedikov AP (1961) Application à l’analyse harmonique des observations des marées terrestres de la méthode des moindres carrés. Comptes Rendus Académie Bulgare des Sciences, 14
  37. Venedikov AP, Ducarme B (2000) Determination of the Earth tide constituents generated by the tidal potentials of degree 3 and 4 for large series of observations made by superconducting gravimeters. Bulg Geophys J 26(1–4): 61–74
  38. Venedikov AP, Vieira R, de Toro C (1997) On the determination of the D and SD Earth tides generated by the tidal potential of the third order. Bull Inf Marées Terrestres 126:9635–9637.
  39. Wahr John M., Body tides on an elliptical, rotating, elastic and oceanless earth, 10.1111/j.1365-246x.1981.tb02690.x
  40. Wenzel HG (1996) The nanogal software: Earth tide data preprocessing package. Bull Inf Marées Terrestres 124:9425–9439.
  41. Wenzel HG (1997a) Tide generating potential for the Earth. Tidal phenomena. In: Wilhelm H, Zürn W, Wenzel H-G (eds) Lecture notes in Earth sciences, vol 66, pp 9–26
  42. Wenzel HG (1997b) Analysis of Earth tide observations. Tidal phenomena. In: Wilhelm H, Zürn W, Wenzel H-G (eds) Lecture notes in Earth sciences, vol 66, pp 59–76
Bibliographic reference Ducarme, Bernard. Determination of the main Lunar waves generated by the third degree tidal potential and validity of the corresponding body tides models. In: Journal of Geodesy, Vol. 86, no. 1, p. 65-75 (2012)
Permanent URL