User menu

Concentration on circles for nonlinear schrödinger-poisson systems with unbounded potentials vanishing at infinity

Bibliographic reference Bonheure, Denis ; Di Cosmo, Jonathan ; Mercuri, Carlo. Concentration on circles for nonlinear schrödinger-poisson systems with unbounded potentials vanishing at infinity. In: Communications in Contemporary Mathematics, Vol. 14, no. 2 (2012)
Permanent URL
  1. Ambrosetti Antonio, On Schrödinger-Poisson Systems, 10.1007/s00032-008-0094-z
  2. Ambrosetti A., J. Eur. Math. Soc. (JEMS), 7, 117
  3. Ambrosetti Antonio, Malchiodi Andrea, Ni Wei-Ming, Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, 10.1007/s00220-003-0811-y
  4. Ambrosetti Antonio, Rabinowitz Paul H, Dual variational methods in critical point theory and applications, 10.1016/0022-1236(73)90051-7
  5. Badiale Marino, D'Aprile Teresa, Concentration around a sphere for a singularly perturbed Schrödinger equation, 10.1016/s0362-546x(01)00717-9
  6. Benci Vieri, D'Aprile Teresa, The Semiclassical Limit of the Nonlinear Schrödinger Equation in a Radial Potential, 10.1006/jdeq.2001.4138
  7. Bonheure Denis, Di Cosmo Jonathan, Van Schaftingen Jean, Nonlinear Schrödinger equation with unbounded or vanishing potentials: Solutions concentrating on lower dimensional spheres, 10.1016/j.jde.2011.10.004
  8. Bonheure Denis, Mercuri Carlo, Embedding theorems and existence results for nonlinear Schrödinger–Poisson systems with unbounded and vanishing potentials, 10.1016/j.jde.2011.04.010
  9. Bonheure D., Rev. Mat. Iberoamericana, 24, 297
  10. D'Aprile T., Differential Integral Equations, 3, 349
  11. del Pino Manuel, Felmer Patricio L., Local mountain passes for semilinear elliptic problems in unbounded domains, 10.1007/bf01189950
  12. del Pino Manuel, Felmer Patricio L., Semi-classical States for Nonlinear Schrödinger Equations, 10.1006/jfan.1996.3085
  13. del Pino Manuel, Felmer Patricio, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, 10.1007/s002080200327
  14. Del Pino Manuel, Kowalczyk Michal, Wei Jun-Cheng, Concentration on curves for nonlinear Schrödinger Equations, 10.1002/cpa.20135
  15. Gay Jean-Claude, Delande Dominique, Bommier Antoine, Atomic quantum states with maximum localization on classical elliptical orbits, 10.1103/physreva.39.6587
  16. Lieb Elliott, Loss Michael, Analysis, ISBN:9780821827833, 10.1090/gsm/014
  17. Mahmoudi Fethi, Montenegro Marcelo, Malchiodi Andrea, Solutions to the nonlinear Schrödinger equation carrying momentum along a curve, 10.1002/cpa.20290
  18. Mercuri C., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19, 211
  19. Moroz Vitaly, Van Schaftingen Jean, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, 10.1007/s00526-009-0249-y
  20. Palais Richard S., The principle of symmetric criticality, 10.1007/bf01941322
  21. Nauenberg Michael, Quantum wave packets on Kepler elliptic orbits, 10.1103/physreva.40.1133
  22. Ruiz David, On the Schrödinger–Poisson–Slater System: Behavior of Minimizers, Radial and Nonradial Cases, 10.1007/s00205-010-0299-5
  23. Ruiz David, The Schrödinger–Poisson equation under the effect of a nonlinear local term, 10.1016/j.jfa.2006.04.005
  24. Willem Michel, Minimax Theorems, ISBN:9781461286738, 10.1007/978-1-4612-4146-1