User menu

A distributional approach to 2D Volterra dislocations at the continuum scale

Bibliographic reference Van Goethem, Nicolas ; Dupret, François. A distributional approach to 2D Volterra dislocations at the continuum scale. In: European Journal of Applied Mathematics, Vol. 23, no. 3, p. 417-439 (2012)
Permanent URL
  1. Almgren F., Deformations and multiple-valued functions, 10.1090/pspum/044/840268
  2. Bui Huy Duong, Duality and symmetry lost in solid mechanics, 10.1016/j.crme.2007.11.018
  3. Burgers, Proc. K. Ned. Akad., 42, 293 (1939)
  4. Dascalu C., Maugin G. A., The Energy of Elastic Defects: A Distrxsibutional Approach, 10.1098/rspa.1994.0046
  5. Dupret, Handbook of Crystal Growth, the Netherlands, 875 (1994)
  6. Eshelby J.D., Frank F.C., Nabarro F.R.N., XLI. The equilibrium of linear arrays of dislocations., 10.1080/14786445108561060
  7. Hirth, Theory of Dislocations (1982)
  8. Kleinert H, Gauge Fields in Condensed Matter : Vol. 1: Superflow and Vortex Lines (Disorder Fields, Phase Transitions)Vol. 2: Stresses and Defects (Differential Geometry, Crystal Melting), ISBN:9789971502102, 10.1142/0356
  9. Kondo, Proceedings of the 2nd Japan Nat. Congr. Applied Mechanics, 41 (1952)
  10. Kröner, Physiques des défauts, 217 (1981)
  11. Mattila Pertti, Geometry of Sets and Measures in Euclidean Spaces : Fractals and rectifiability, ISBN:9780511623813, 10.1017/cbo9780511623813
  12. Maugin G.A., Geometry and thermomechanics of structural rearrangements: Ekkehart Kröner's legacy Plenary lecture presented at the 80th Annual GAMM Conference, Augsburg, 25-28 March 2002, 10.1002/zamm.200310007
  13. Müller G, Friedrich J, Challenges in modeling of bulk crystal growth, 10.1016/j.jcrysgro.2004.02.024
  14. Nye J.F, Some geometrical relations in dislocated crystals, 10.1016/0001-6160(53)90054-6
  15. Schwartz, Théorie des distributions (1957)
  16. Volterra Vito, Sur l'équilibre des corps élastiques multiplement connexes, 10.24033/asens.583