User menu

Predicting live birth chances for women with multiple consecutive failing IVF cycles: A simple and accurate prediction for routine medical practice

Bibliographic reference Porcu, Géraldine ; Lehert, Philippe ; Colella, Carolina ; Giorgetti, Claude. Predicting live birth chances for women with multiple consecutive failing IVF cycles: A simple and accurate prediction for routine medical practice. In: Reproductive Biology and Endocrinology, Vol. 11, no. 1 (2013)
Permanent URL
  1. Habbema J.D.F., Towards less confusing terminology in reproductive medicine: a proposal, 10.1093/humrep/deh303
  2. Lintsen A.M.E., Braat D.D.M., Habbema J.D.F., Kremer J.A.M., Eijkemans M.J.C., Can differences in IVF success rates between centres be explained by patient characteristics and sample size?, 10.1093/humrep/dep358
  3. Leushuis Esther, van der Steeg Jan Willem, Steures Pieternel, Bossuyt Patrick M.M., Eijkemans Marinus J.C., van der Veen Fulco, Mol Ben W.J., Hompes Peter G.A., Prediction models in reproductive medicine: a critical appraisal†, 10.1093/humupd/dmp013
  4. Templeton Allan, Morris Joan K, Parslow William, Factors that affect outcome of in-vitro fertilisation treatment, 10.1016/s0140-6736(96)05291-9
  5. Hunault Claudine C, Eijkemans Marinus J.C, Pieters Math H.E.C, te Velde Egbert R, Habbema J.Dik F, Fauser Bart C.J.M, Macklon Nicholas S, A prediction model for selecting patients undergoing in vitro fertilization for elective single embryo transfer, 10.1016/s0015-0282(01)03243-5
  6. Steures Pieternel, van der Steeg Jan Willem, Mol Ben W.J, Eijkemans Marinus J.C, van der Veen Fulco, Habbema J.Dik F, Hompes Peter G.A, Bossuyt Patrick M.M, Verhoeve Harold R, van Kasteren Yvonne M, van Dop Peter A, Prediction of an ongoing pregnancy after intrauterine insemination, 10.1016/j.fertnstert.2003.12.028
  7. Smeenk J.M.J., External validation of the Templeton model for predicting success after IVF, 10.1093/humrep/15.5.1065
  8. van Loendersloot L.L., van Wely M., Repping S., van der Veen F., Bossuyt P.M.M., Templeton prediction model underestimates IVF success in an external validation, 10.1016/j.rbmo.2011.02.012
  9. Steyerberg Ewout W, Harrell Frank E, Borsboom Gerard J.J.M, Eijkemans M.J.C, Vergouwe Yvonne, Habbema J.Dik F, Internal validation of predictive models, 10.1016/s0895-4356(01)00341-9
  10. Nelson Scott M., Lawlor Debbie A., Predicting Live Birth, Preterm Delivery, and Low Birth Weight in Infants Born from In Vitro Fertilisation: A Prospective Study of 144,018 Treatment Cycles, 10.1371/journal.pmed.1000386
  11. Ferraretti A. P., La Marca A., Fauser B. C. J. M., Tarlatzis B., Nargund G., Gianaroli L., , ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria, 10.1093/humrep/der092
  12. Leridon H., Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment, 10.1093/humrep/deh304
  13. Pullium Jennifer K, Milner Ross, Tuma Gary A, Pregnancy following homologous prepubertal ovarian transplantation in the dog, 10.1186/1743-1050-5-1
  14. Cooke S., Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development, 10.1093/humrep/deg447
  15. Swets J., Measuring the accuracy of diagnostic systems, 10.1126/science.3287615
  16. Cai Q. F., Wan F., Huang R., Zhang H. W., Factors predicting the cumulative outcome of IVF/ICSI treatment: a multivariable analysis of 2450 patients, 10.1093/humrep/der228
  17. Malizia Beth A., Hacker Michele R., Penzias Alan S., Cumulative Live-Birth Rates after In Vitro Fertilization, 10.1056/nejmoa0803072