User menu

Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results

Bibliographic reference San Martín, Ernesto ; Rolin, Jean-Marie ; Castro, Luis M.. Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results. In: Psychometrika, Vol. 78, no. 2, p. 341-379 (2013)
Permanent URL
  1. Adams Raymond J., Wilson Mark, Wang Wen-chung, The Multidimensional Random Coefficients Multinomial Logit Model, 10.1177/0146621697211001
  2. Adams Raymond J., Wu Margaret L., The Mixed-Coefficients Multinomial Logit Model: A Generalized Form of the Rasch Model, Multivariate and Mixture Distribution Rasch Models (2007) ISBN:9780387329161 p.57-75, 10.1007/978-0-387-49839-3_4
  3. Andersen, E.B. (1980). Discrete statistical models with social sciences applications. Amsterdam: North-Holland.
  4. Béguin A. A., Glas C. A. W., MCMC estimation and some model-fit analysis of multidimensional IRT models, 10.1007/bf02296195
  5. Berti Patrizia, Pratelli Luca, Rigo Pietro, Trivial intersection of σ -fields and Gibbs sampling, 10.1214/07-aop387
  6. Berti Patrizia, Pratelli Luca, Rigo Pietro, Atomic intersection of σ-fields and some of its consequences, 10.1007/s00440-009-0230-x
  7. Birnbaum, A. (1968). Some latent trait models and their use in inferring any examinee’s ability. In F.M. Lord & M.R. Novick (Eds.), Statistical theories of mental test scores (pp. 395–479). Reading: Addison-Wesley.
  8. Bock R. Darrell, Aitkin Murray, Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm, 10.1007/bf02293801
  9. Bock R. Darrell, Zimowski Michele F., Multiple Group IRT, Handbook of Modern Item Response Theory (1997) ISBN:9781441928498 p.433-448, 10.1007/978-1-4757-2691-6_25
  10. Carlin Bradley, Louis Thomas, Bayes and Empirical Bayes Methods for Data Analysis, Second Edition, ISBN:9781584881704, 10.1201/9781420057669
  11. Explanatory Item Response Models, ISBN:9781441923233, 10.1007/978-1-4757-3990-9
  12. del Pino Guido, San Martín Ernesto, González Jorge, De Boeck Paul, On the Relationships between Sum Score Based Estimation and Joint Maximum Likelihood Estimation, 10.1007/s11336-007-9023-2
  13. Eberly Lynn E., Carlin Bradley P., Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models, 10.1002/1097-0258(20000915/30)19:17/18<2279::aid-sim569>;2-r
  14. Embretson, S.E., & Reise, S.P. (2000). Item response theory for psychologists. Mahwah: Lawrence Erlbaum Associates.
  15. Florens J. P., Mouchart M., A Note on Noncausality, 10.2307/1912602
  16. Florens, J.-P., Mouchart, M., & Rolin, J.-M. (1990). Elements of Bayesian statistics. New York: Dekker.
  17. Florens, J.-P., & Rolin, J.-M. (1984). Asymptotic sufficiency and exact estimability. In J.-P. Florens, M. Mouchart, J.-P. Raoult, & L. Simar (Eds.), Alternative approaches to time series analysis (pp. 121–142). Bruxelles: Publications des Facultés Universitaires Saint-Louis.
  18. Gabrielsen Arne, Consistency and identifiability, 10.1016/0304-4076(78)90035-0
  19. Gelfand Alan E., Sahu Sujit K., Identifiability, Improper Priors, and Gibbs Sampling for Generalized Linear Models, 10.1080/01621459.1999.10473840
  20. Gelman Andrew, Rubin Donald B., Inference from Iterative Simulation Using Multiple Sequences, 10.1214/ss/1177011136
  21. Geweke, J. (1992). Bayesian statistics: Vol. 4. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. Oxford: Clarendon Press.
  22. Ghosh Malay, Ghosh Atalanta, Chen Ming-Hui, Agresti Alan, Noninformative priors for one-parameter item response models, 10.1016/s0378-3758(99)00201-3
  23. Gustafson Paul, On Model Expansion, Model Contraction, Identifiability and Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables, 10.1214/088342305000000098
  24. Halmos, P. (1951). Introduction to Hilbert space, and the theory of spectral multiplicity. New York: Chelsea.
  25. Hambleton, R.K., Swaminathan, H., & Rogers, H.J. (1991). Fundamentals of item response theory. Thousand Oaks: Sage.
  26. Heidelberger Philip, Welch Peter D., Simulation Run Length Control in the Presence of an Initial Transient, 10.1287/opre.31.6.1109
  27. Hutschinson, T.P. (1991). Ability, parameter information, guessing: statistical modelling applied to multiple-choice tests. Rundle Mall: Rumsby Scientific Publishing.
  28. Karabatsos George, Walker Stephen G., Coherent psychometric modelling with Bayesian nonparametrics, 10.1348/000711007x246237
  29. Kass, R., Carlin, B., Gelman, A., & Neal, R. (1998). Markov chain Monte Carlo in practice: a roundtable discussion. American Statistician, 52, 93–100.
  30. Koopmans T. C., Reiersol O., The Identification of Structural Characteristics, 10.1214/aoms/1177729837
  31. Lancaster Tony, The incidental parameter problem since 1948, 10.1016/s0304-4076(99)00044-5
  32. Handbook of Modern Item Response Theory, ISBN:9781441928498, 10.1007/978-1-4757-2691-6
  33. Lindley, D.V. (1971). Bayesin statistics: a review. Philadelphia: Society for Industrial and Applied Mathematics.
  34. Maris Gunter, Bechger Timo, On Interpreting the Model Parameters for the Three Parameter Logistic Model, 10.1080/15366360903070385
  35. McDonald, R.P. (1999). Test theory: a unified treatment. Hillsdale: Erlbaum.
  36. Millsap, R., & Maydeu-Olivares, A. (2009). Quantitative methods in psychology. Thousand Oaks: Sage.
  37. Miyazaki Kei, Hoshino Takahiro, A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors, 10.1007/s11336-008-9108-6
  38. Molenaar, I.W. (1995). Estimation of item parameters. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models. Foundations, recent developments and applications. New York: Springer (Chapter 3).
  39. Mouchart, M. (1976). A note on Bayes theorem. Statistica, 36, 349–357.
  40. Poirier Dale J., REVISING BELIEFS IN NONIDENTIFIED MODELS, 10.1017/s0266466698144043
  41. R Development Core Team (2006). R: a language and environment for statistical computing [Computer software manual]. Vienna, Austria. (ISBN 3-900051-07-0).
  42. Rao M, Conditional Measures and Applications, ISBN:9781574445930, 10.1201/9781420027433
  43. Rizopoulos Dimitris, ltm: AnRPackage for Latent Variable Modeling and Item Response Theory Analyses, 10.18637/jss.v017.i05
  44. Roberts Gareth O., Rosenthal Jeffrey S., Markov-chain monte carlo: Some practical implications of theoretical results, 10.2307/3315667
  45. Martín Ernesto San, del Pino Guido, De Boeck Paul, IRT Models for Ability-Based Guessing, 10.1177/0146621605282773
  46. San Martín, E., & González, J. (2010). Bayesian identifiability: contributions to an inconclusive debate. Chilean Journal of Statistics, 1, 69–91.
  47. San Martín Ernesto, González Jorge, Tuerlinckx Francis, Identified Parameters, Parameters of Interest and Their Relationships, 10.1080/15366360903117053
  48. San Martín Ernesto, Jara Alejandro, Rolin Jean-Marie, Mouchart Michel, On the Bayesian Nonparametric Generalization of IRT-Type Models, 10.1007/s11336-011-9213-9
  49. San Martín, E., Mouchart, M., & Rolin, J.M. (2005). Ignorable common information, null sets and Basu’s first theorem. Sankhyā, 67, 674–698.
  50. San Martín, E., & Quintana, F. (2002). Consistency and identifiability revisited. Brazilian Journal of Probability and Statistics, 16, 99–106.
  51. Shiryaev, A.N. (1995). Probability (2nd ed.). Berlin: Springer.
  52. Spivak, M. (1965). Calculus on manifolds: a modern approach to classical theorems of advanced calculus. Cambridge: Perseus Book Publishing.
  53. Swaminathan Hariharan, Gifford Janice A., Bayesian estimation in the three-parameter logistic model, 10.1007/bf02295598
  54. Thissen David, On Interpreting the Parameters for any Item Response Model, 10.1080/15366360903117061
  55. Thissen, D., & Wainer, H. (2001). Item response models for items scored in two categories. Berlin: Springer.
  56. Woods Carol M., Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables., 10.1037/1082-989x.11.3.253
  57. Woods Carol M., Ramsay-Curve Item Response Theory for the Three-Parameter Logistic Item Response Model, 10.1177/0146621607308014
  58. Woods Carol M., Thissen David, Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities, 10.1007/s11336-004-1175-8
  59. Xie Yang, Carlin Bradley P., Measures of Bayesian learning and identifiability in hierarchical models, 10.1016/j.jspi.2005.04.003