User menu

Explicit formula for asymptotic higher moments of the Nadaraya-Watson estimator

Bibliographic reference Geenens, Gery. Explicit formula for asymptotic higher moments of the Nadaraya-Watson estimator. In: Sankhyā: The Indian Journal of Statistics. Series A, Vol. 76, no. 1, p. 77-100 (2014)
Permanent URL
  1. Bierens, H.J. (1987). Kernel estimators of regression functions. In Advances in Econometrics, (T. F. Bewley, ed.), Cambridge University Press, 99–144.
  2. Bucklew James Antonio, Introduction to Rare Event Simulation, ISBN:9781441918932, 10.1007/978-1-4757-4078-3
  3. Cao-Abad R., Rate of Convergence for the Wild Bootstrap in Nonparametric Regression, 10.1214/aos/1176348394
  4. Dembo Amir, Zeitouni Ofer, Large Deviations Techniques and Applications, ISBN:9781461253228, 10.1007/978-1-4612-5320-4
  5. Doukhan Paul, Lang Gabriel, Evaluation for moments of a ratio with application to regression estimation, 10.3150/09-bej190
  6. Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman and Hall, London.
  7. Hall Peter, The Bootstrap and Edgeworth Expansion, ISBN:9780387945088, 10.1007/978-1-4612-4384-7
  8. Hall, P. (1992b). On the removal of skewness by transformation. J. R. Statist. Soc. B, 54, 221–228.
  9. Härdle W., Mammen E., Bootstrap Methods in Nonparametric Regression, Nonparametric Functional Estimation and Related Topics (1991) ISBN:9789401054201 p.111-123, 10.1007/978-94-011-3222-0_8
  10. Härdle Wolfgang, Werwatz Axel, Müller Marlene, Sperlich Stefan, Nonparametric and Semiparametric Models, ISBN:9783642620768, 10.1007/978-3-642-17146-8
  11. Louani Djamal, Some Large Deviations Limit Theorems in Conditional Nonparametric Statistics, 10.1080/02331889908802690
  12. Nadaraya E. A., On Estimating Regression, 10.1137/1109020
  13. Wand, M.P. (1990). On exact L 1 rates in nomparametric kernel regression. Scand. J. Statist., 251–256.
  14. Wand M. P., Jones M. C., Kernel Smoothing, ISBN:9780412552700, 10.1007/978-1-4899-4493-1
  15. Watson, G.S. (1964). Smooth regression analysis. Sankhya A, 26, 359–372.