User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Analysis of slow-wave propagation in coplanar transmission lines with inkjet printed multiwalled carbon nanotubes network

  1. Du, IEEE Trans Microwave Theory Tech, 52, 483 (2003)
  2. Sor J., Qian Y., Itoh T., Miniature low-loss CPW periodic structures for filter applications, 10.1109/22.971618
  3. Hasegawa H., Furukawa M., Yanai H., Properties of Microstrip Line on Si-SiO/sub 2/ System, 10.1109/tmtt.1971.1127658
  4. Hasegawa H., Okizaki H., M.I.S. and Schottky slow-wave coplanar striplines on GaAs substrates, 10.1049/el:19770471
  5. Gorur A., Karpuz C., Alkan M., Characteristics of periodically loaded CPW structures, 10.1109/75.704413
  6. Shau-Gang Mao, Ming-Yi Chen, A novel periodic electromagnetic bandgap structure for finite-width conductor-backed coplanar waveguides, 10.1109/7260.928932
  7. Lai, Proceedings of JCIS Joint Conference on Information Sciences, 8 (2006)
  8. Jong-Sik Lim, Jun-Seok Park, Young-Taek Lee, Dal Ahn, Sangwook Nam, Application of defected ground structure in reducing the size of amplifiers, 10.1109/lmwc.2002.801139
  9. Lederer Dimitri, Raskin Jean-Pierre, Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers, 10.1016/s0038-1101(03)00253-3
  10. Zhang, Proceedings of the International Microwave Symposium, 15 (2008)
  11. Te-Hui Wang, Itoh T., Compact Grating Structure for Application to Filters and Resonators in Monolithic Microwave Integrated Circuits, 10.1109/tmtt.1987.1133835
  12. Fiedziuszko S.J., Dual-Mode Dielectric Resonator Loaded Cavity Filters, 10.1109/tmtt.1982.1131253
  13. Franc A.-L., Kaddour D., Issa H., Pistono E., Corrao N., Fournier J.-M., Ferrari P., Impact of technology dispersion on slow-wave high performance shielded CPW transmission lines characteristics, 10.1002/mop.25598
  14. Saito R., Fujita M., Dresselhaus G., Dresselhaus M. S, Electronic structure of chiral graphene tubules, 10.1063/1.107080
  15. Yang Y., Tan C. Y., Sun W. Q., Li W., Ong C. K., Liu Y., Li Y., Xu S. Y., High frequency resistance of single-walled and multiwalled carbon nanotubes, 10.1063/1.3558909
  16. El Sabbagh, Proceedings of IEEE International Symposium on Electromagnetic Compatibility (EMC), 841 (2010)
  17. Attiya Ahmed M., LOWER FREQUENCY LIMIT OF CARBON NANOTUBE ANTENNA, 10.2528/pier09062001
  18. Mason P. V., Gould R. W., Slow‐Wave Structures Utilizing Superconducting Thin‐Film Transmission Lines, 10.1063/1.1657907
  19. Dragoman M, Flahaut E, Dragoman D, Al Ahmad M, Plana R, Writing simple RF electronic devices on paper with carbon nanotube ink, 10.1088/0957-4484/20/37/375203
  20. Kordás Krisztián, Mustonen Tero, Tóth Géza, Jantunen Heli, Lajunen Marja, Soldano Caterina, Talapatra Saikat, Kar Swastik, Vajtai Robert, Ajayan Pulickel M., Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes, 10.1002/smll.200600061
  21. Denneulin Aurore, Bras Julien, Carcone Fiona, Neuman Charles, Blayo Anne, Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films, 10.1016/j.carbon.2011.02.012
  22. Eo Y., Eisenstadt W.R., High-speed VLSI interconnect modeling based on S-parameter measurements, 10.1109/33.239889
  23. Wolff Ingo, Coplanar Microwave Integrated Circuits : Wolff/Coplanar Microwave Integrated Circuits, ISBN:9780470040881, 10.1002/0470040882
  24. Fukuoka Y., Itoh T., Slow-wave propagation on MIS periodic coplanar waveguide, 10.1049/el:19830028
  25. Seki S., Hasegawa H., Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates, 10.1049/el:19810657
  26. Posar, Microwave engineering, 308 (1998)
Bibliographic reference Oueriemi, Ibtissem ; Raskin, Jean-Pierre ; Roda Neve, Cesar ; Choubani, Fethi ; Dupont, Védi ; et. al. Analysis of slow-wave propagation in coplanar transmission lines with inkjet printed multiwalled carbon nanotubes network. In: Microwave & Optical Technology Letters, Vol. 56, no. 5, p. 1118-1124 (2014)
Permanent URL http://hdl.handle.net/2078.1/160284