User menu

A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: Comparison with effects of contraction and other AMPK activators

Bibliographic reference Lai, Yu-Chiang ; Kviklyte, Samanta ; Vertommen, Didier ; Lantier, Louise ; Foretz, Marc ; et. al. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: Comparison with effects of contraction and other AMPK activators. In: Biochemical Journal, Vol. 460, no. 3, p. 363-375 (2014)
Permanent URL
  1. Hardie D. Grahame, Ross Fiona A., Hawley Simon A., AMPK: a nutrient and energy sensor that maintains energy homeostasis, 10.1038/nrm3311
  2. Steinberg G. R., Kemp B. E., AMPK in Health and Disease, 10.1152/physrev.00011.2008
  3. Shulman Gerald I., Rothman Douglas L., Jue Thomas, Stein Peter, DeFronzo Ralph A., Shulman Robert G., Quantitation of Muscle Glycogen Synthesis in Normal Subjects and Subjects with Non-Insulin-Dependent Diabetes by13C Nuclear Magnetic Resonance Spectroscopy, 10.1056/nejm199001253220403
  4. Jensen Jørgen, Rustad Per Inge, Kolnes Anders Jensen, Lai Yu-Chiang, The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise, 10.3389/fphys.2011.00112
  5. Hayashi T, Diabetes, 47, 1369 (1998)
  6. Wright D. C., Hucker K. A., Holloszy J. O., Han D. H., Ca2+ and AMPK Both Mediate Stimulation of Glucose Transport by Muscle Contractions, 10.2337/diabetes.53.2.330
  7. Mu James, Brozinick Joseph T, Valladares Otto, Bucan Maja, Birnbaum Morris J, A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle, 10.1016/s1097-2765(01)00251-9
  8. O'Neill H. M., Maarbjerg S. J., Crane J. D., Jeppesen J., Jorgensen S. B., Schertzer J. D., Shyroka O., Kiens B., van Denderen B. J., Tarnopolsky M. A., Kemp B. E., Richter E. A., Steinberg G. R., AMP-activated protein kinase (AMPK)  1 2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise, 10.1073/pnas.1105062108
  9. Pold R., Jensen L. S., Jessen N., Buhl E. S., Schmitz O., Flyvbjerg A., Fujii N., Goodyear L. J., Gotfredsen C. F., Brand C. L., Lund S., Long-Term AICAR Administration and Exercise Prevents Diabetes in ZDF Rats, 10.2337/diabetes.54.4.928
  10. Winder W, Am. J. Physiol., 277, E1 (1999)
  11. Jørgensen Sebastian B., Viollet Benoit, Andreelli Fabrizio, Frøsig Christian, Birk Jesper B., Schjerling Peter, Vaulont Sophie, Richter Erik A., Wojtaszewski Jørgen F. P., Knockout of the α2but Not α15′-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle, 10.1074/jbc.m306205200
  12. Barnes Brian R., Marklund Stefan, Steiler Tatiana L., Walter Mark, Hjälm, Göran, Amarger Valerie, Mahlapuu Margit, Leng Ying, Johansson Carina, Galuska Dana, Lindgren Kerstin, Åbrink Magnus, Stapleton David, Zierath Juleen R., Andersson Leif, The 5′-AMP-activated Protein Kinase γ3 Isoform Has a Key Role in Carbohydrate and Lipid Metabolism in Glycolytic Skeletal Muscle, 10.1074/jbc.m405533200
  13. Steinberg Gregory R., O'Neill Hayley M., Dzamko Nicolas L., Galic Sandra, Naim Tim, Koopman René, Jørgensen Sebastian B., Honeyman Jane, Hewitt Kimberly, Chen Zhi-Ping, Schertzer Jonathan D., Scott John W., Koentgen Frank, Lynch Gordon S., Watt Matthew J., van Denderen Bryce J. W., Campbell Duncan J., Kemp Bruce E., Whole Body Deletion of AMP-activated Protein Kinase β2 Reduces Muscle AMPK Activity and Exercise Capacity, 10.1074/jbc.m110.102434
  14. Lee-Young Robert S., Griffee Susan R., Lynes Sara E., Bracy Deanna P., Ayala Julio E., McGuinness Owen P., Wasserman David H., Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercisein Vivo, 10.1074/jbc.m109.021048
  15. Funai K., Cartee G. D., Inhibition of Contraction-Stimulated AMP-Activated Protein Kinase Inhibits Contraction-Stimulated Increases in PAS-TBC1D1 and Glucose Transport Without Altering PAS-AS160 in Rat Skeletal Muscle, 10.2337/db08-1477
  16. Taylor Eric B., An Ding, Kramer Henning F., Yu Haiyan, Fujii Nobuharu L., Roeckl Katja S. C., Bowles Nicole, Hirshman Michael F., Xie Jianxin, Feener Edward P., Goodyear Laurie J., Discovery of TBC1D1 as an Insulin-, AICAR-, and Contraction-stimulated Signaling Nexus in Mouse Skeletal Muscle, 10.1074/jbc.m708839200
  17. Liu Yang, Lai Yu-Chiang, Hill Elaine V., Tyteca Donatienne, Carpentier Sarah, Ingvaldsen Ada, Vertommen Didier, Lantier Louise, Foretz Marc, Dequiedt Franck, Courtoy Pierre J., Erneux Christophe, Viollet Benoît, Shepherd Peter R., Tavaré Jeremy M., Jensen Jørgen, Rider Mark H., Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle, 10.1042/bj20130644
  18. Zhou Gaochao, Myers Robert, Li Ying, Chen Yuli, Shen Xiaolan, Fenyk-Melody Judy, Wu Margaret, Ventre John, Doebber Thomas, Fujii Nobuharu, Musi Nicolas, Hirshman Michael F., Goodyear Laurie J., Moller David E., Role of AMP-activated protein kinase in mechanism of metformin action, 10.1172/jci13505
  19. Rena Graham, Pearson Ewan R., Sakamoto Kei, Molecular mechanism of action of metformin: old or new insights?, 10.1007/s00125-013-2991-0
  20. Corton Julia M., Gillespie John G., Hawley Simon A., Hardie D. Grahame, 5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for Activating AMP-Activated Protein Kinase in Intact Cells?, 10.1111/j.1432-1033.1995.tb20498.x
  21. Buhl E. S., Jessen N., Pold R., Ledet T., Flyvbjerg A., Pedersen S. B., Pedersen O., Schmitz O., Lund S., Long-Term AICAR Administration Reduces Metabolic Disturbances and Lowers Blood Pressure in Rats Displaying Features of the Insulin Resistance Syndrome, 10.2337/diabetes.51.7.2199
  22. Song X. M., Fiedler M., Galuska D., Ryder J. W., Fernström M., Chibalin A. V., Wallberg-Henriksson H., Zierath J. R., 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice, 10.1007/s125-002-8245-8
  23. Cuthbertson Daniel J., Babraj John A., Mustard Kirsteen J.W., Towler Mhairi C., Green Kevin A., Wackerhage Henning, Leese Graeme P., Baar Keith, Thomason-Hughes Michaela, Sutherland Calum, Hardie D. Grahame, Rennie Michael J., 5-Aminoimidazole-4-Carboxamide 1-β-d-Ribofuranoside Acutely Stimulates Skeletal Muscle 2-Deoxyglucose Uptake in Healthy Men, 10.2337/db06-1716
  24. Babraj J. A., Mustard K., Sutherland C., Towler M. C., Chen S., Smith K., Green K., Leese G., Hardie D. G., Rennie M. J., Cuthbertson D. J., Blunting of AICAR-induced human skeletal muscle glucose uptake in type 2 diabetes is dependent on age rather than diabetic status, 10.1152/ajpendo.90811.2008
  25. Vincent M. F., Marangos P. J., Gruber H. E., van den Berghe G., Inhibition by AICA Riboside of Gluconeogenesis in Isolated Rat Hepatocytes, 10.2337/diab.40.10.1259
  26. Young Martin E, Radda George K, Leighton Brendan, Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR - an activator of AMP-activated protein kinase, 10.1016/0014-5793(96)00129-9
  27. Guigas B., Bertrand L., Taleux N., Foretz M., Wiernsperger N., Vertommen D., Andreelli F., Viollet B., Hue L., 5-Aminoimidazole-4-Carboxamide-1- -D-Ribofuranoside and Metformin Inhibit Hepatic Glucose Phosphorylation by an AMP-Activated Protein Kinase-Independent Effect on Glucokinase Translocation, 10.2337/diabetes.55.04.06.db05-1178
  28. Cool Barbara, Zinker Bradley, Chiou William, Kifle Lemma, Cao Ning, Perham Matthew, Dickinson Robert, Adler Andrew, Gagne Gerard, Iyengar Rajesh, Zhao Gang, Marsh Kennan, Kym Philip, Jung Paul, Camp Heidi S., Frevert Ernst, Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, 10.1016/j.cmet.2006.05.005
  29. Sanders Matthew J., Ali Zahabia S., Hegarty Bronwyn D., Heath Richard, Snowden Michael A., Carling David, Defining the Mechanism of Activation of AMP-activated Protein Kinase by the Small Molecule A-769662, a Member of the Thienopyridone Family, 10.1074/jbc.m706543200
  30. Göransson Olga, McBride Andrew, Hawley Simon A., Ross Fiona A., Shpiro Natalia, Foretz Marc, Viollet Benoit, Hardie D. Grahame, Sakamoto Kei, Mechanism of Action of A-769662, a Valuable Tool for Activation of AMP-activated Protein Kinase, 10.1074/jbc.m706536200
  31. Scott John W., van Denderen Bryce J.W., Jorgensen Sebastian B., Honeyman Jane E., Steinberg Gregory R., Oakhill Jonathan S., Iseli Tristan J., Koay Ann, Gooley Paul R., Stapleton David, Kemp Bruce E., Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase β1-Containing Complexes, 10.1016/j.chembiol.2008.10.005
  32. Treebak J. T., Birk J. B., Hansen B. F., Olsen G. S., Wojtaszewski J. F. P., A-769662 activates AMPK  1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle, 10.1152/ajpcell.00051.2009
  33. Thornton Claire, Snowden Michael A., Carling David, Identification of a Novel AMP-activated Protein Kinase β Subunit Isoform That Is Highly Expressed in Skeletal Muscle, 10.1074/jbc.273.20.12443
  34. Giordanetto Fabrizio, Karis David, Direct AMP-activated protein kinase activators: a review of evidence from the patent literature, 10.1517/13543776.2012.743994
  35. Xiao B, Nat. Commun., 4, 3017 (2013)
  36. Bookser B, World Pat., WO20100366613 A1 (2010)
  37. Lai Y.-C., Stuenaes J. T., Kuo C.-H., Jensen J., Glycogen content and contraction regulate glycogen synthase phosphorylation and affinity for UDP-glucose in rat skeletal muscles, 10.1152/ajpendo.00113.2007
  38. Lai Yu-Chiang, Stuenæs Jorid T., Kuo Chia-Hua, Jensen Jørgen, Insulin-stimulated glycogen synthesis and glycogen synthase activation after electrical stimulation of epitrochlearis muscles with different initial glycogen contents, 10.3109/13813455.2010.494670
  39. Lai Y.-C., Lin F.-C., Jensen J., Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus muscles, 10.1111/j.1748-1716.2009.01998.x
  40. Lantier L., Mounier R., Leclerc J., Pende M., Foretz M., Viollet B., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, 10.1096/fj.10-155994
  41. Lai Yu-Chiang, Liu Yang, Jacobs Roxane, Rider Mark H., A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle, 10.1042/bj20120772
  42. Lai Y. C., Zarrinpashneh E., Jensen J., Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents, 10.1152/japplphysiol.00401.2009
  43. CASCANTE Marta, CENTELLES Josep J., AGIUS Loranne, Use of α-toxin from Staphylococcus aureus to test for channelling of intermediates of glycolysis between glucokinase and aldolase in hepatocytes, 10.1042/0264-6021:3520899
  44. Bradford Marion M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, 10.1016/0003-2697(76)90527-3
  45. Woods Angela, Salt Ian, Scott James, Hardie D.Grahame, Carling David, The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro, 10.1016/s0014-5793(96)01209-4
  46. Hutber C, Am. J. Physiol., 272, E262 (1997)
  47. Liu Yang, Vertommen Didier, Rider Mark H., Lai Yu-Chiang, Mammalian target of rapamycin-independent S6K1 and 4E-BP1 phosphorylation during contraction in rat skeletal muscle, 10.1016/j.cellsig.2013.05.005
  48. Miranda Lisa, Horman Sandrine, De Potter Isabelle, Hue Louis, Jensen Jørgen, Rider Mark H., Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle, 10.1007/s00424-007-0368-2
  49. Wojtaszewski J. F.P., Jorgensen S. B., Hellsten Y., Hardie D. G., Richter E. A., Glycogen-Dependent Effects of 5-Aminoimidazole-4-Carboxamide (AICA)-Riboside on AMP-Activated Protein Kinase and Glycogen Synthase Activities in RatSkeletal Muscle, 10.2337/diabetes.51.2.284
  50. Landgraf Rachelle R., Goswami Devrishi, Rajamohan Francis, Harris Melissa S., Calabrese Matthew F., Hoth Lise R., Magyar Rachelle, Pascal Bruce D., Chalmers Michael J., Busby Scott A., Kurumbail Ravi G., Griffin Patrick R., Activation of AMP-Activated Protein Kinase Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry, 10.1016/j.str.2013.08.023
  51. Mahlapuu M., Expression profiling of the  -subunit isoforms of AMP-activated protein kinase suggests a major role for  3 in white skeletal muscle, 10.1152/ajpendo.00147.2003
  52. Fullerton Morgan D, Galic Sandra, Marcinko Katarina, Sikkema Sarah, Pulinilkunnil Thomas, Chen Zhi-Ping, O'Neill Hayley M, Ford Rebecca J, Palanivel Rengasamy, O'Brien Matthew, Hardie D Grahame, Macaulay S Lance, Schertzer Jonathan D, Dyck Jason R B, van Denderen Bryce J, Kemp Bruce E, Steinberg Gregory R, Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin, 10.1038/nm.3372
  53. Rose Adam J., Alsted Thomas J., Jensen Thomas E., Kobberø J. Bjarke, Maarbjerg Stine J., Jensen Jørgen, Richter Erik A., A Ca2+-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions : Skeletal muscle protein synthesis during exercise, 10.1113/jphysiol.2008.167528