User menu

Higher Central Extensions in Mal’tsev Categories

Bibliographic reference Everaert, Thomas. Higher Central Extensions in Mal’tsev Categories. In: Applied Categorical Structures : a journal devoted to applications of categorical methods in algebra, analysis, order, topology and computer science, Vol. 22, no. 5-6, p. 961-979 (2014)
Permanent URL
  1. Barr, M.: Exact categories. In: exact categories and categories of sheaves, Lecture Notes in Mathematics, vol. 236, pp. 1–120. Springer (1971)
  2. Bourn, D.: Normalization, equivalence, kernel equivalence and affine categories. In: Lecture Notes in Mathematics, vol. 1488, pp. 43–62. Springer-Verlag (1991)
  3. Bourn Dominique, Mal'cev categories and fibration of pointed objects, 10.1007/bf00122259
  4. Bourn Dominique, Aspherical abelian groupoids and their directions, 10.1016/s0022-4049(01)00093-7
  5. Bourn Dominique, The denormalized 3×3 lemma, 10.1016/s0022-4049(02)00143-3
  6. Bourn Dominique, Rodelo Diana, Comprehensive factorization and I-central extensions, 10.1016/j.jpaa.2011.07.013
  7. Brown Ronald, Ellis Graham J., Hopf Formulae for the Higher Homology of a Group, 10.1112/blms/20.2.124
  8. Carboni A., Kelly G. M., Pedicchio M. C., Some remarks on Maltsev and Goursat categories, 10.1007/bf00872942
  9. Carboni A., Lambek J., Pedicchio M.C., Diagram chasing in Mal'cev categories, 10.1016/0022-4049(91)90022-t
  10. Everaert Tomas, Higher central extensions and Hopf formulae, 10.1016/j.jalgebra.2008.12.015
  11. Everaert Tomas, Goedecke Julia, Van der Linden Tim, Resolutions, higher extensions and the relative Malʼtsev axiom, 10.1016/j.jalgebra.2012.07.036
  12. Everaert, T., Gran, M.: Homology of n-fold groupoids. Theory Appl. Categ. 23(2), 22–41 (2010)
  13. Everaert Tomas, Gran Marino, Van der Linden Tim, Higher Hopf formulae for homology via Galois Theory, 10.1016/j.aim.2007.11.001
  14. Everaert, T., Van der Linden, T.: A note on double central extensions in exact Mal’tsev categories. Cah. Topol. Géom. Differ. Catég. LI, 143–153 (2010)
  15. GOEDECKE JULIA, VAN DER LINDEN TIM, On satellites in semi-abelian categories: Homology without projectives, 10.1017/s0305004109990107
  16. Gran Marino, Central extensions and internal groupoids in Maltsev categories, 10.1016/s0022-4049(99)00092-4
  17. Gran, M.: Applications of categorical Galois theory in universal algebra. Fields Inst. Commun. 43, 243–280 (2004)
  18. Gran Marino, Rossi Valentina, Galois theory and double central extensions, 10.4310/hha.2004.v6.n1.a16
  19. Im, G.B., Kelly, G.M.: On classes of morphisms closed under limits. J. Korean Math. Soc 23, 19–33 (1986)
  20. Janelidze George, Pure Galois theory in categories, 10.1016/0021-8693(90)90130-g
  21. Janelidze, G.: What is a double central extension? (The question was asked by Ronald Brown). Cah. Top. Géom. Diff. Catég. XXXII(3), 191–201 (1991)
  22. Janelidze, G.: Higher dimensional central extensions: A categorical approach to homology theory of groups. In: Lecture at the International Category Theory Meeting CT95. Halifax (1995)
  23. Janelidze George, Galois Groups, Abstract Commutators, and Hopf Formula, 10.1007/s10485-007-9107-2
  24. Janelidze G., Kelly G.M., Galois theory and a general notion of central extension, 10.1016/0022-4049(94)90057-4
  25. Janelidze, G., Kelly, G.M.: The reflectiveness of covering morphisms in algebra and geometry. Theory Appl. Categ. 3(6), 132–159 (1997)
  26. Janelidze, G., Kelly, G.M.: Central extensions in Mal’tsev varieties. Theory Appl. Categ. 7(10), 219–226 (2000)
  27. Janelidze George, Tholen Walter, Facets of descent, I, 10.1007/bf00878100
  28. Janelidze G., Tholen W., 10.1023/a:1008697013769
  29. MacDonald, J., Sobral, M.: Aspects of monads. In: Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory, Encyclopedia of Mathematics and Applications, vol. 97, pp. 213–268. Cambridge University Press (2004)
  30. Rodelo, D., Van der Linden, T.: The third cohomology group classifies double central extensions. Theory Appl. Categ. 23(8), 150–169 (2010)