User menu

On the Unidentifiability of the Fixed-Effects 3PL Model

Bibliographic reference San Martin Gutiérrez, Ernesto ; Tuerlinckx, Francis ; González, Jorge. On the Unidentifiability of the Fixed-Effects 3PL Model. In: Psychometrika, , p. 1-18 (2014)
Permanent URL
  1. Baker, F., & Kim, S. (2004). Item response theory: parameter estimation techniques. New York: Marcel Dekker.
  2. Bamber Donald, van Santen Jan P.H, How to Assess a Model's Testability and Identifiability, 10.1006/jmps.1999.1275
  3. Basu, D. (1975). Statistical information and likelihood (with discussion). Sankhyā: The Indian Journal of Statistics, 37, 1–71.
  4. Berman, A., & Ben-Israel, A. (1971). More on linear inequalities with applications to matrix theory. Journal of Mathematical Analysis and Its Applications, 27, 367–389.
  5. Berman Abraham, Plemmons Robert J., Nonnegative Matrices in the Mathematical Sciences, ISBN:9780898713213, 10.1137/1.9781611971262
  6. Birnbaum Allan, On the Foundations of Statistical Inference, 10.1080/01621459.1962.10480660
  7. Birnbaum, A. (1968). Some latent trait models and their use in inferring any examinee’s ability. In F.M. Lord & M.R. Novick (Eds.), Statistical theories of mental test scores (pp. 395–479). Reading: Adison-Wesley.
  8. Bunke H., Bunke O., Identifiability and Estimability, 10.1080/02331887408801160
  9. Cao Jing, Stokes S. Lynne, Bayesian IRT Guessing Models for Partial Guessing Behaviors, 10.1007/s11336-007-9045-9
  10. Castro Luis M., San Martín Ernesto, Arellano-Valle Reinaldo B., A note on the parameterization of multivariate skewed-normal distributions, 10.1214/11-bjps159
  11. Cox D. R., Hinkley D. V., Theoretical Statistics, ISBN:9780412124204, 10.1007/978-1-4899-2887-0
  12. De Boeck, P. & Wilson, M. (Eds.) (2004). Explanatory item response models: a generalized linear and nonlinear approach. New York: Springer.
  13. del Pino Guido, San Martín Ernesto, González Jorge, De Boeck Paul, On the Relationships between Sum Score Based Estimation and Joint Maximum Likelihood Estimation, 10.1007/s11336-007-9023-2
  14. Embretson, S.E., & Reise, S.P. (2000). Item response theory for psychologists. Mahwah: Lawrence Erlbaum Associates.
  15. Engle Robert F., Hendry David F., Richard Jean-Francois, Exogeneity, 10.2307/1911990
  16. Fisher R. A., On the Mathematical Foundations of Theoretical Statistics, 10.1098/rsta.1922.0009
  17. Fisher, R.A. (1973). Statistical methods for research workers. New York: Hafner.
  18. Florens, J.P., Mouchart, M., & Rolin, J.-M. (1999). Elements of Bayesian statistics. New York: Marcel Dekker.
  19. Gabrielsen Arne, Consistency and identifiability, 10.1016/0304-4076(78)90035-0
  20. Haavelmo Trygve, The Probability Approach in Econometrics, 10.2307/1906935
  21. Haberman, S. (2004). Joint and conditional maximum likelihood estimation for the Rasch model for binary responses (Technical Report RR-04-20). Princeton, NJ: ETS.
  22. Koopmans Tjalling C., Identification Problems in Economic Model Construction, 10.2307/1905689
  23. Koopmans T. C., Reiersol O., The Identification of Structural Characteristics, 10.1214/aoms/1177729837
  24. Lancaster Tony, The incidental parameter problem since 1948, 10.1016/s0304-4076(99)00044-5
  25. LeCam Lucien, Schwartz Lorraine, A Necessary and Sufficient Condition for the Existence of Consistent Estimates, 10.1214/aoms/1177705993
  26. Linacre, J. (2012). Winsteps (Version 3.75.0) [Computer software]. [Computer software manual].
  27. Lord, F. (1980). Applications of item response theory to practical testing problems. Mahwah: Lawrence Erlbaum Associates.
  28. Manski, C.F. (1995). Identification problems in the social sciences. New York: Harvard University Press.
  29. Maris, G., & Bechger, T. (2009). On interpreting the model parameters for the three parameter logistic model. Measurement: Interdisciplinary Research and Perspective, 7, 75–86.
  30. McCullagh Peter, What is a statistical model?, 10.1214/aos/1035844977
  31. Molenaar, I.W. (1995). Estimation of item parameters. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models. Foundations, recent developments and applications (pp. 39–51). New York: Springer.
  32. Neyman J., Scott Elizabeth L., Consistent Estimates Based on Partially Consistent Observations, 10.2307/1914288
  33. Oulhaj, A., & Mouchart, M. (2003). Partial sufficiency with connection to the identification problem. Metron. International Journal of Statistics, LXI, 267–283.
  34. Paulino Carlos Daniel Mimoso, Bragança Pereira Carlos Alberto, On identifiability of parametric statistical models, 10.1007/bf02589044
  35. Raoult, J.P. (1975). Structures statistiques. Paris: Presses Universitaires de France.
  36. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. The Danish Institute for Educational Research (Expanded edition, 1980). Chicago: The University Chicago Press.
  37. Revuelta Javier, Estimating Difficulty from Polytomous Categorical Data, 10.1007/s11336-009-9145-9
  38. Rothenberg Thomas J., Identification in Parametric Models, 10.2307/1913267
  39. San Martín, E., & González, J. (2010). Bayesian identifiability: contributions to an inconclusive debate. Chilean Journal of Statistics, 1, 69–91.
  40. San Martín, E., González, J., & Tuerlinckx, F. (2009). Identified parameters, parameters of interest and their relationships. Measurement: Interdisciplinary Research and Perspective, 7, 95–103.
  41. San Martín Ernesto, Jara Alejandro, Rolin Jean-Marie, Mouchart Michel, On the Bayesian Nonparametric Generalization of IRT-Type Models, 10.1007/s11336-011-9213-9
  42. San Martín, E., & Quintana, F. (2002). Consistency and identifiability revisited. Brazilian Journal of Probability and Statistics, 16, 99–106.
  43. San Martín Ernesto, Rolin Jean-Marie, Identification of parametric Rasch-type models, 10.1016/j.jspi.2012.06.014
  44. San Martín Ernesto, Rolin Jean-Marie, Castro Luis M., Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results, 10.1007/s11336-013-9322-8
  45. Thissen, D., & Wainer, H. (2001). Test scoring. New York: Psychology Press.
  46. Thurstone L. L., The vectors of mind: Multiple-factor analysis for the isolation of primary traits., 10.1037/10018-000
  47. van der Linden Wim J., Linking Response-Time Parameters onto a Common Scale, 10.1111/j.1745-3984.2009.00101.x
  48. Handbook of Modern Item Response Theory, ISBN:9781441928498, 10.1007/978-1-4757-2691-6
  49. Wingersky, M. (1983). LOGIST: a program for computing maximum likelihood procedures for logistic test models. In R.K. Hambleton (Ed.), Applications of item response theory.
  50. Wood, R.L., Wingersky, M.S., & Lord, F.M. (1976). LOGIST: a computer program for estimating examinee ability and item characteristic curve parameters. Princeton: Educational Testing Service (RM 76-6) [Computer program].
  51. Woods Carol M., Ramsay-Curve Item Response Theory for the Three-Parameter Logistic Item Response Model, 10.1177/0146621607308014