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Abstract— We describe a compressive hyperspectral imaging
scheme that randomly convolves each spectral band of the data
cube. This independent sensing of each wavelength relies on a
tiling of Fabry-Pérot filters incorporated in the CMOS pixel grid.
The compressive observations are induced by an out-of-focus spa-
tial light modulation joined to focusing optics. While our design
extends a recent monochromatic imaging scheme to the hyper-
spectral domain, we show that our model reaches good reconstruc-
tion performances when compared to more ideal sensing methods.

1 Introduction
Hyperspectral imaging is an advanced imaging technique
which integrates spectroscopy into the image capturing pro-
cess, providing for each pixel its light intensity as a function
of wavelength. The resulting information is organized into a
hyperspectral (HS) cube with two spatial and one spectral di-
mensions, which may be interpreted as a stack of images, one
for each wavelength. Spectral cameras are currently used in
research applications such as remote sensing [1] and food in-
spection [2], where this detailed spectral information may be
used at application-level to identify objects and materials. Due
to rapidly falling system complexity, size and cost, such tech-
nologies are expected to be adopted in more general purpose
applications [3].
In order to acquire these vast amounts of data, spectral cam-
eras typically use a time-consuming scanning approach, based
on, e.g., line scanning with dispersive optics (such as prisms
and gratings [4]) or spectral scanning using tunable filters (e.g.,
AOTF [5]). This problem may be overcome using snapshot ac-
quisition, where the entire 3-D datacube is acquired during one
frame period by optically multiplexing the contents of the 3-D
cube onto a 2-D sensor. Whereas in scanning spectral imaging
the data in a spectral cube is conveyed to multiple, consecutive
frames, in snapshot spectral imaging this data is multiplexed
onto a single frame of the sensor. However, due to the limited
number of sensor pixels, snapshot imagers require a trade-off
between spatial and spectral resolution.
This trade-off has been previously tackled by using compres-
sive sensing (CS) techniques [6] to acquire the 3-D HS cube at
sub-Nyquist sampling rates [7, 8]. In this work, we introduce a
new compressive HS scheme that combines a snapshot imaging
sensor based on monolithically integrated Fabry-Pérot [9] filter
tiles with an optical front-end based on an out-of-focus spatial
light modulator (SLM). By allowing the number of SLM pat-
terns to vary at runtime, the system can reach higher SNR, thus
operating as a hybrid setup between a scanning and a snapshot
spectral camera. Since compressive sensing techniques avoid
scanning, associated problems with motion blur and reduced
SNR in high speed applications are also avoided.

2 Optical and Sensing Model
In this work, we extend the monochromatic compressive opti-
cal scheme developed by Björklund and Magli [10] for acquir-
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Fig. 1: (left) Tiled Fabry-Pérot filters on top of a CMOS sensor. (right) Part of
a tiled representation of our low-rank and sparse HS toy example.

ing hyperspectral images. Our imager model is actually built
around a snapshot spectral sensor, which monolithically inte-
grates a set of Fabry-Pérot (FP) interferometers organized as
tiled filters on top of a standard, off-the-shelf CMOS sensor
[3] (Fig. 1). The FP filter is typically made of a transparent
layer (or cavity) with two mirrors at each side of that layer. The
cavity length and the mirror reflectivity determine the selected
wavelength and the spectral bandwidth (or full width at half
maximum) of the filter, respectively. Thanks to the monolithic
integration of the filter on the sensor, the stray light in the sys-
tem is heavily reduced and the sensitivity and the speed of the
sensor are increased [11]. The use of CMOS process technol-
ogy heavily reduces the cost and improves the compactness of
the hyperspectral camera.
Let us now explain how the FP filters are combined with the
compressive setup. The optical model of the imager, restricted
to a 2-D section for simplicity, is illustrated in Fig. 2 (a). First,
in a monochromatic setting, an object is imaged by conven-
tional objective optics O on an image plane. Classical optics
tells us that every point on this plane radiates light in many
directions, as initially produced by the original object point.
Therefore, after the image plane, the object image is replicated
in many beams of parallel light rays. By placing an out-of-
focus spatial light modulator (SLM) after that plane, each of
such beams can be modulated differently according to its direc-
tion, before being focused (i.e., “summed”) on a single pixel of
the detector by a second lens F . If this lens has focal length
f , this pixel is located at distance f tan θ of the optical axis.
By construction, the detector actually records specific samples
of the convolution (up to a kernel reversal) between the im-
age and the modulation. In the case of polychromatic imag-
ing with no chromatic aberrations in our optics2, by tiling the
detector with FP spectral filters we independently convolves
different slices of the HS volume with the SLM modulation.
As explained hereafter, by inserting a random SLM pattern,
the optical scheme can compressively image the HS volume,
wavelength-wise, with a partial Toeplitz sensing [12].

Mathematically, let a HS volume x ∈ RN×N×L2

with Ntot =
L2N2 voxels to be acquired by the imager. The number of
wavelengths is set to a square value L2 since the detector is
made of a 2-D grid of Ns × Ns pixels covered by a grid of
L × L square tiles Tj (1 6 j 6 L2) of distinct FP filters,
each selecting one wavelength λj . AssumingNs divisible byL,
each tile spectrally filters the light received by a square patch of

2These will be fully considered in a future study.
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Fig. 2 (a): The compressive hyperspectral imager (1-D slice)
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Fig. 2 (b): Low-rank/joint sparsity model.
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Fig. 2 (c): Total variation model.

Mλ×Mλ pixels, withMλ = Ns/L. By design (see Fig. 2 (a)),
since any replication of the image must be spatially modulated
at resolution N (so as to determine the spatial resolution of x)
and by adjusting a shift of one pixel in the detector to a shift
of one pixel for the associated image beam in the SLM plane,
we have Nslm = N +Ns − 1 = N + LMλ − 1. For limiting
the SLM resolution, we arbitrary set Nslm = 2N − 1 so that
Ns = N and Mλ = N/L.
Every pixel of a given tile Tj is influenced by a limited part
ϕj ∈ R(N+Mλ)×(N+Mλ) of the whole SLM modulation ϕ ∈
RNslm×Nslm . Therefore, denoting by w the vectorization of any
matrix w, the recorded light intensities yj ∈ RMλ×Mλ in Tj
read

yj = Φjxj + nj ∈ RM
2
λ , Φj := SjCj ,

where xj is the jth slice of x at wavelength λj , Cj ∈ RN2×N2

is the Toeplitz matrix convolving an input image with ϕj ,
Sj ∈ {0, 1}M

2
λ×N

2

is a selection matrix extracting indices
associated to pixels in Tj , and nj accounts for possible mea-
surement noise. Gathering all the wavelengths and vectoriz-
ing the result, the whole sensing model is y = Φx + n, with
Φ := diag(Φ1, · · · ,ΦL2) and y,n ∈ RMλ×Mλ×L2

.
The final sensing is thus realized independently for each wave-
length, as observed from the block structure of Φ. This restricts
the performances of our system compared to an ideal compres-
sive imaging device, i.e., when Φ is dense and unstructured.
However, conversely to the sensing operator, the reconstruction
methods recovering x from y as described in Sec. 3 exploit the
3-D structure of the data.
Compressed Sensing theory [6] shows that if a M × D sens-
ing matrix A respects the restricted isometry property (RIP)
with sufficiently small RIP constant, any K-sparse (or com-
pressible) signals of RD can be recovered (or estimated) from
the possibly noisy measurement vector Ax ∈ RM . Moreover,
a structured sensing issued from a M -subsampled Toeplitz
or circulant matrix whose generating entries are drawn from
an iid Bernoulli ±1 distribution, satisfies the restricted isom-
etry property (RIP) on K-sparse signals if M > M0 =
O(K3/2(logD)3/2) [12]. Since the matrices Φj respect such
a Toeplitz structure (even in 2-D), we can therefore expect to
efficiently reconstruct each slice of the HS volume x under
a sparse signal prior provided the number of observations is
large. However, this work tests the regularizing capabilities of
two other priors: a 3-D total variation (TV), for a “cartoon
shape” HS model, and a low-rank and joint sparse prior [13].
We also consider a situation where the numberM2

λ = N2/L of
observations per band for one modulation ϕ is fixed by the de-
tector design. An increasing number of observations is reached
by merging the measurements obtained for S different random
SLM patterns. The HS volume x of N2L2 voxels is thus ob-
served with a total of M2

λL
2S = N2S measurements, i.e., we

aim at reaching 1 6 S � L2 with high reconstruction quality.

3 Simulations
The capability of our HS imaging scheme has been simulated
as follows. We focus our study on two toy examples of size
N = 256 and L = 8, i.e., two structured HS volumes with
Ntot = 222 voxels. The first is a “Mondrian-like” example [15]
with small 3-D total variation (TV) [14] made of 8 randomly
generated overlapping cubes of different sizes and values in the
HS volume. The second example follows a low-rank source
model (LRSM) of rank r = 4 with (joint) sparsity level K =
N2/16 = 4096 [13] (see Fig. 1).
Two kinds of reconstruction methods have been used to recover
these HS volumes from their compressive observations. For the
“Mondrian” example, we solve x∗ = argminu ‖u‖TV +ρ‖y−
Φu‖22 thanks to the TwIST algorithm [16] and by manually
adjusting ρ. The recovery of the LRSM example is achieved by
promoting a low-rank and joint sparse data model [13], i.e.,

x∗ = argmin
u

(
∑
j ‖ΨTuj‖21)1/2 + ρ ‖(u1, · · · ,uL2)‖∗

s.t. ‖y −Φu‖2 6 ε,

where ‖A‖∗ is the trace norm of A, ΨT is the spatial Haar
wavelet transform [17] at every wavelength, and the first term
in the minimized cost is the `1/`2 mixed norm enforcing joint
sparsity at every wavelength [18]. This optimization problem is
solved by proximal algorithms [19, 20] with ρ =

√
K/2r [13].

Fig. 2 (b) and Fig. 2 (c) display the reconstruction SNR for both
methods as a function of the number of random SLM patterns
S. Two noisy sensing scenarios were considered with mea-
surement noise at 20 and 80 dB. The sensing associated to our
out-of-focus modulation with FP filters (OFMFP) is confronted
with the more efficient spread-spectrum random Fourier en-
semble (SSRFE) sensing [21], also applied bandwise. For the
two noise levels and the two considered HS examples, we see
that our sensing quickly reaches similar reconstruction quali-
ties as SSRFE for increasing S, with a stronger match for the
LRSM model. Moreover, for these two toy examples and under
a 20 dB noise, as soon as S & 16 (i.e., 25% of Nyquist rate),
the SNR starts to saturate to a value related to the noise power.

4 Discussions and Conclusion
The capability of a compressive HS imager combining a CMOS
detector tiled with FP filters and an out-of-focus SLM modula-
tion has been studied. Despite an independent sensing of each
wavelength, our simulations demonstrate already good perfor-
mances on toy examples for a small number of modulations
compared to the number of wavelengths. In a future work, the
optical aberrations of the different optics and the SLM diffrac-
tion will be integrated in the sensing model. We will also study
how to modulate the cube both spatially and spectrally.
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