User menu

Instantons and Extreme Value Statistics of Random Matrices

Bibliographic reference Atkin, Max. Instantons and Extreme Value Statistics of Random Matrices. In: Journal of High Energy Physics, Vol. 2014, no. 04, p. 118 (2014)
Permanent URL
  1. G. Akemann, J. Baik and P. Di Francesco, The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford U.K. (2011).
  2. C.A. Tracy and H. Widom, Distribution functions for largest eigenvalues and their applications, in Proceedings of the ICM. Vol. 1, Beijing China (2002), pg. 587 [ math-ph/0210034 ].
  3. Claeys Tom, Grava Tamara, Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small-dispersion limit : Painlevé II Asymptotics for KdV, 10.1002/cpa.20277
  4. T. Claeys and S. Olver, Numerical study of higher order analogues of the Tracy-Widom distribution, arXiv:1111.3527 .
  5. M. Adler, M. Cafasso and P. van Moerbeke, Nonlinear PDEs for Fredholm determinants arising from string equations, arXiv:1207.6341 .
  6. G. Akemann and M.R. Atkin, Higher Order Analogues of Tracy-Widom Distributions via the Lax Method, J. Phys. A 46 (2013) 015202 [ arXiv:1208.3645 ] [ INSPIRE ].
  7. Witte N S, Forrester P J, Gap probabilities in the finite and scaled Cauchy random matrix ensembles, 10.1088/0951-7715/13/6/305
  8. S.N. Majumdar, G. Schehr, D. Villamaina and P. Vivo, Large deviations of the top eigenvalue of large Cauchy random matrices, J. Phys. A 46 (2013) 022001 [ arXiv:1210.5400 ].
  9. Nadal Celine, Majumdar Satya N, A simple derivation of the Tracy–Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, 10.1088/1742-5468/2011/04/p04001
  10. Dean David S., Majumdar Satya N., Large Deviations of Extreme Eigenvalues of Random Matrices, 10.1103/physrevlett.97.160201
  11. D.S. Dean and S.N. Majumdar, Extreme value statistics of eigenvalues of Gaussian random matrices, Phys. Rev. E 77 (2008) 041108 [ arXiv:0801.1730 ].
  12. P. Vivo, S.N. Majumdar and O. Bohigas, Large deviations of the maximum eigenvalue in Wishart random matrices, J. Phys. A 40 (2007) 4317 [ cond-mat/0701371 ].
  13. Majumdar Satya N., Vergassola Massimo, Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices, 10.1103/physrevlett.102.060601
  14. Borot G, Eynard B, Majumdar S N, Nadal C, Large deviations of the maximal eigenvalue of random matrices, 10.1088/1742-5468/2011/11/p11024
  16. L. Susskind, The anthropic landscape of string theory, in Universe or multiverse?, B. Carr eds., Cambridge University Press, Cambridge U.K. (2003), pg. 247 [ hep-th/0302219 ] [ INSPIRE ].
  17. Fyodorov Yan V., Complexity of Random Energy Landscapes, Glass Transition, and Absolute Value of the Spectral Determinant of Random Matrices, 10.1103/physrevlett.92.240601
  18. Fyodorov Yan V., Nadal Celine, Critical Behavior of the Number of Minima of a Random Landscape at the Glass Transition Point and the Tracy-Widom Distribution, 10.1103/physrevlett.109.167203
  19. Mariño Marcos, Schiappa Ricardo, Weiss Marlene, Nonperturbative effects and the large-order behavior of matrix models and topological strings, 10.4310/cntp.2008.v2.n2.a3
  20. Mariño Marcos, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, 10.1088/1126-6708/2008/12/114
  21. Mariño Marcos, Schiappa Ricardo, Weiss Marlene, Multi-instantons and multicuts, 10.1063/1.3097755
  22. M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, arXiv:1206.6272 [ INSPIRE ].
  23. Francesco P.Di, Ginsparg P., Zinn-Justin J., 2D gravity and random matrices, 10.1016/0370-1573(94)00084-g
  24. M. Mariño, Les Houches lectures on matrix models and topological strings, hep-th/0410165 [ INSPIRE ].
  25. Gross David J., Matytsin Andrei, Instanton induced large N phase transitions in two- and four-dimensional QCD, 10.1016/s0550-3213(94)80041-3
  26. Forrester Peter J., Majumdar Satya N., Schehr Grégory, Non-intersecting Brownian walkers and Yang–Mills theory on the sphere, 10.1016/j.nuclphysb.2010.11.013
  27. Schehr Grégory, Majumdar Satya N., Comtet Alain, Forrester Peter J., Reunion Probability of N Vicious Walkers: Typical and Large Fluctuations for Large N, 10.1007/s10955-012-0614-7
  28. Bowick Mark J., Brézin Edouard, Universal scaling of the tail of the density of eigenvalues in random matrix models, 10.1016/0370-2693(91)90916-e
  29. Felder Giovanni, Riser Roman, Holomorphic matrix integrals, 10.1016/j.nuclphysb.2004.05.010
  30. A. Sato and A. Tsuchiya, ZZ brane amplitudes from matrix models, JHEP 02 (2005) 032 [ hep-th/0412201 ] [ INSPIRE ].
  31. V.A. Kazakov and I.K. Kostov, Instantons in noncritical strings from the two matrix model, in From fields to strings. Vol. 3, M. Shifman et al. eds., World Scientific, Singapore (2004), pg. 1864 [ hep-th/0403152 ] [ INSPIRE ].
  32. David François, Non-perturbative effects in matrix models and vacua of two dimensional gravity, 10.1016/0370-2693(93)90417-g
  33. Seiberg Nathan, Shih David, Branes, Rings and Matrix Models in Minimal (Super)string Theory, 10.1088/1126-6708/2004/02/021
  34. Klebanov I.R., Maldacena J., Seiberg N., Unitary and Complex Matrix Models as 1-d Type 0 Strings, 10.1007/s00220-004-1183-7