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General introduction

Since the seminal contributions by Selten [1975] and Kreps and Wil-

son [1982], the theory of Nash equilibrium refinements considered just

single valued solution concepts.

Both perfectness and sequentiality focused just on equilibria that

can be obtained by a process of backwards induction that is by requir-

ing that, at every point in any play of the game, each player believes

that his equilibrium strategy will maximize his expected payoff in the

reminder of the game. Consistency with backwards induction is thus

a natural requirement for strategic stability. Unfortunately it is not

a sufficient condition since it is not always invariant with respect to

arbitrary details of the extensive form of the game. This flaw would

lead naturally to properness (Myerson [1978]) since a proper equilib-

rium of a normal form game is sequential in any tree with that normal

form. However, Kohlberg and Mertens [1986] proved that not even

properness is immune to a forward induction argument or to deletion

of strictly dominated strategies. Even more interestingly Kohlberg and

Mertens [1986] proved that no single valued equilibrium refinement

could conform with a natural definition of strategic stability. This re-

sult led the authors to modify the traditional approach and to consider

set valued instead of single valued solution concepts.

1



2 General introduction

The first chapter of the thesis is inspired by this final result and tries
to investigate the relation between single and set valued solution con-
cepts. The first aim is to evaluate whether properness could really be
considered the most advanced single valued Nash equilibrium refine-
ment. Then the more ambitious goal is to improve on properness and
define a new single valued refinement that, even if necessarily fails to
satisfy one or more desirable properties, at least succeeds in being in-
cluded in a strategically stable set of equilibria. Unfortunately, while
the new concept of refined equilibria amend some flaws of proper equi-
libria, the desired goal has not been reached.

It is interesting to note that the main result in Kohlberg and Mertens
[1986] coincides with the pars destruens of their general argumentation:
they proved that no single valued equilibrium could be considered
strategically stable but none of the proposed definitions of stable sets
could actually be regarded as strategically stable. Just Mertens [1989]
and Mertens [1991] devised the pars construens that is a solution con-
cept that satisfies all the desirable properties that define strategic sta-
bility. To get the result Mertens [1989] preserved the family of pertur-
bations proposed in Kohlberg and Mertens [1986] to define stable sets
but imposed a specific geometric requirement a set of equilibria should
satisfy to be defined M-stable. Therefore it would be interesting to eval-
uate if Mertens’ approach was necessary or if a slight modification of
the setting proposed in Kohlberg and Mertens [1986] were enough to
define a stable set. This is the core of chapter 2 that proposes a new
approach that adopts a wider collection of perturbations as the main
tool to get a satisfactory definition. This represents the main contribu-
tion of this thesis since it proves that the model proposed in Kohlberg
and Mertens [1986] just needed the definition of an additional set of
perturbations to get strategic stability.

Finally Chapter 3 is devoted to an extension of strategic stability
to correlated equilibria in cooperative games. This development was
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part of Mertens’ program since his seminal contribution to the theory
of refinements in cooperative games (Mertens and Dhillon [1996]).

However the approach adopted in this thesis is technically closer to
the one proposed in Myerson [1986] and the connection with Mertens’
stability is confined to the attempt of devising a model consistent with
the properties defining strategic stability as defined in Mertens [1989].
Also in this case, the devised definition of stable correlated equilibria
improves on existing refinements but does not satisfy all the desirata.





Chapter 1
Is properness the last word in

single valued equilibria?

1.1 Introduction

In their seminal paper Kohlberg and Mertens [1986] listed some de-
sirable properties defining, albeit incompletely, the concept of strategic
stability:

Existence: every game has at least one strategically stable set;

Connectedness: every strategically stable set is connected;

Backwards induction: a strategically stable set of a tree contains a
backwards induction equilibrium of the tree;

Invariance: a strategically stable set of a game is also a strategically
stable set of any game with the same reduced normal form;

Admissibility: the players’ strategies are undominated at any point
in a strategically stable set;

Iterated dominance and forward induction: a strategically stable set of
the game Γ contains the strategically stable set of any game Γ̃ obtained
from Γ by deleting a strategy that is either dominated or that is always
an inferior response in every equilibrium of the set.

5



6 1. IS PROPERNESS THE LAST WORD IN SINGLE VALUED EQUILIBRIA?

These properties, while defined for a set valued solution, would ap-
ply to a single valued Nash equilibrium refinement except that a strate-
gically stable equilibrium should always conform with backwards in-
duction and should be invariant with respect to iterated deletion of
dominated strategies.

For generic games, the dichotomy between single-valued and set-
valued refinements is recognized to be immaterial since any equilib-
rium of a generic normal form game is a singleton and, for a generic
extensive form game, all the equilibria that belong to the same con-
nected component determine an identical probability distribution over
its final nodes. Thus the focus is on non generic games.

Sequential equilibria seem a natural candidate for strategic stability
since, quoting Kohlberg and Mertens [1986], in every sequential equi-
librium "(. . .) at every point during any play of the game, each player
must believe that his prescribed strategy will maximize his expected
payoff in the reminder of the game". Unfortunately, sequentiality is not
always invariant with respect to arbitrary details of the extensive form
of the game. Consider the game tree A1.1 represented in Figure 1.1:
given 1 < x ≤ 2 the equilibrium σ = {[T ] ; [R]} is sequential. However
it is no longer sequential in the extensive form game B1.1 represented
in Figure 1.2: at the second information set of player I strategy [M ]

dominates strategy [B] and should be part of every sequential equilib-
rium. Therefore player II should assign probability one to node α and
choose [L]. Note that games A1.1 and B1.1 have the same normal form.

This flaw would naturally lead to properness since a proper equi-
librium of a normal form game is sequential in any tree with that nor-
mal form. However, not even properness is immune to a forward in-
duction argument. Consider the proper equilibrium σ = {[T ] ; [R]}
of game A1.1 in Figure 1.1. Remind that in an ε-proper equilibrium
σε while each player i takes as given his opponents’ strategies σε−i,
he could make a mistake when choosing his own strategy. Still, his
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strategic choice is driven by an invisible hand: given σε−i, the worse
the mistake for player i, the less likely it is (see Myerson [1978]). Thus
σε = {(1− ε− ε2) [T ] + ε [B] + ε2 [M ] ; (1− ε) [R] + ε [L]} is an ε-proper
equilibrium since, once player II has to move, he’d assume that his op-
ponent’s most likely mistake is [B]. However, if player II had to move,
he should infer that his opponent had played [M ] betting on a chance
to get more than he could by playing [T ]. Therefore player II should
play [L] and, consequently, player I should choose [M ] deviating from
the equilibrium strategy [T ].

Figure 1.1: Game A1.1

Figure 1.2: Game B1.1

Note that if the dominated strategy [B] were deleted σ = {[T ] ; [R]}
would no longer be a proper equilibrium. More generally, Kohlberg
and Mertens [1986] conjecture that backwards induction solutions fail
to imply strategic stability since they don’t satisfy iterated dominance.
Interestingly, when properness is considered, deletion of dominated
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Figure 1.3: Game A1.1 in normal form

strategies can be mimicked by the introduction of a randomly redun-
dant strategy that is a new strategy ŝi payoff equivalent to a random-
ization among a finite number of pure strategies in player i’s strategy
set. In the normal form game A1.1 represented in Figure 1.3 introduce
a randomized strategy (1− α) [T ] + α[M ] with α > 1

2
and x = 0. Given

the ε-proper equilibrium strategy σε2 = (1− ε) [R] + ε[L], the new strat-
egy would represent the most profitable mistake by player 1 inducing
player 2 to deviate from σε2.

Figure 1.4: Game C1.1

More generally, the introduction of a randomly redundant strategy
could change dramatically the set of proper equilibria of a normal form
game. The games represented in Figure 1.4 and Figure 1.5 differ just
for strategy [z1] that is a randomization between strategies [x1] and [a1]

with equal weight [1
2
]. However each of the two extensive form games
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has a unique sequential equilibrium: subgame perfection requires that

player 2 plays 1
2
[x2] + 1

2
[y2] in game C1.1 and 7

12
[x2] + 5

12
[y2] in game

D1.1. This is an unfortunate feature of properness: since a mixed strat-

egy could always be played even if not explicitly included among pure

strategies, the introduction of a randomly redundant strategy should

be regarded as an inessential transformation of the game to be added

to the ones proposed by Thompson [1952b], Thompson [1952a] and

Dalkey [1953] (coalescing of moves, inflation deflation, addition of su-

perfluous moves and interchange of simultaneous moves).

Provided that properness does not satisfy neither iterated domi-

nance nor invariance properties, a single valued solution concept im-

proving on proper equilibria cannot be a refinement of properness it-

self.

Figure 1.5: Game D1.1

A slight modification of the concept of proper equilibria, namely

refined equilibria, is then proposed. Unfortunately, while refined equi-

libria satisfy invariance, they fail to verify even a mild formulation of

the property of iterated dominance. This implies that they do not al-

ways belong to a stable set whatever definition of stability were adopted.
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1.1.1 Introductory examples

The idea underlying the definition of refined equilibria is rather in-
tuitive: no player i trembles when choosing his own strategy, while
he might have doubts about the beliefs that actually drive his oppo-
nents’ strategic choices. This uncertainty is reflected by a probability
distribution over his opponents’ pure strategies. Consider the game
represented in Figure 1.3 with x = 0. Player 1 chooses the (equilib-
rium) strategy [T] provided that he believes that player 2 is going to
choose strategy [R]; player 1 doesn’t need to be sure about his oppo-
nent’s choice: in order to choose [T] he has to believe that his opponent
is going to choose the equilibrium strategy [R] with some probability
δ ∈

[
δ̄, 1
]

where δ̄ is the solution of the following system of linear in-
equalities: {

2 ≥ 3 (1− δ)
2 ≥ δ

⇒ δ̄ =
1

3
(1.1)

If player 2 thought that player 1’s belief δ actually belongs to the inter-
val

[
1
3
, 1
]
, he would choose strategy [R] and the equilibrium {[T ] ; [R]}

would take place. Suppose, however, that player 2 is not perfectly
safe about his opponent’s beliefs. Assume, in particular, that he thinks
that the true value of δ might be lower than δ̄ with an arbitrarily small
probability ε > 0. If the expected value of δ were strictly lower than
δ̄, player 1 would choose [M] instead of the equilibrium strategy [T].
Therefore, from player 2’s perspective, [M] seems, quite reasonably,
more likely to be played than [B]. This would finally imply the choice
of [L], instead of [R], by player 2 since:

2
(
1− ε− ε2

)
+ 1ε > 2

(
1− ε− ε2

)
+ 1ε2 (1.2)

Consider the second proper equilibrium of the game {[M ] ; [L]} and
apply the same way of reasoning. The limit value of δ is now given by
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the solution of the following system of linear inequalities:{
3 (1− δ) ≥ 2
3 (1− δ) ≥ δ

⇒ δ̄ =
1

3
(1.3)

Player 1 will play [M] for any value of δ ∈
[
0, δ̄
]
. Now if player 2

had a doubt about player 1’s beliefs, with an expected value of δ in
a neighborhood of δ̄ he would consider [T] more likely than [B]. This
would confirm the choice of [L] by player 2 since:

1
(
1− ε− ε2

)
+ 2ε > 2ε+ 1ε2 (1.4)

The equilibrium {[M ] ; [L]} is then a refined equilibrium. While the
introduction of a randomly redundant strategy for player 1 might ex-
clude {[T ] ; [R]} from the set of proper equilibria, such an inessential
transformation of the game would not affect the set of refined equi-
libria. Moreover the proposed procedure is not equivalent to the pro-
cedure of (iterated) deletion of (weakly) dominated strategies. As to
make these points clear a second example1 is proposed in Figure 2
where no strategy is (weakly) dominated.

Figure 1.6: Game C1.1 in normal form

Given the strategy si for player i, define its compatible setGsi as the
set of player i’s beliefs in Σ−i consistent with the choice of si. Consider
the proper equilibrium

{
[a1·] ; 1

2
[x2] + 1

2
[y2]
}

. Strategy [a1·] is a best re-
sponse or, equivalently, a first choice strategy for player 1 if and only

1Myerson [1991].
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if the probability δ of x2 lies in G[a1·] =
[

1
4
, 3

4

]
. If player 2 were unsafe

about his opponent’s beliefs, he could assume that the expected value
of δ might be either lower than 1

4
or higher than 3

4
. Since, in principle,

there is no reason to prefer one of these two hypothesis, the choice,
by player 1, of any of the two strategies b1x1 and b1y1 is equally likely
from player 2’s point of view. Therefore, in any ε-approximation of the
equilibrium they could receive a vanishing probability of the same or-
der. Strategies b1x1 and b1y1 can be regarded as second choice-strategies
for player 1, being both a best response given beliefs just outside G[a1·].
In any ε-approximation of an equilibrium a second choice strategy will
receive less probability than a first choice strategy by a multiplicative
factor ε strictly positive and arbitrarily close to zero. Therefore player
2 is willing to randomize between [x2] and [y2] (with equal probability
1
2

in the proposed equilibrium) since:

0 (1− 2ε) + 0ε+ 8ε = 0 (1− 2ε) + 0ε+ 8ε (1.5)

Consider, in this setting, the introduction of a randomly redundant
strategy [b1z1] for player 1 defined as [b1z1] = 1

2
[a1·] + 1

2
[b1y1].

Figure 1.7: Game D1.1 in normal form

In order to support any equilibrium σ in which player 1 plays [a1·],
player 2 must be willing to randomize between [x2] and [y2] in any ε-
approximation σε of the equilibrium itself. This in turn implies that
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the following condition has to be satisfied:

8σε1 (b1y1) + 4σε1 (b1z1) = 8σε1 (b1x1) (1.6)

Given the normal form game represented in Figure 1.7, if player 2

played the equilibrium strategy
{

1
2

[x2] + 1
2

[y2]
}

, then [b1z1] would be

a better response for player 1 than both [b1x1] and [b1y1] and, there-

fore, in any ε-proper equilibrium approximating
{

[a1·] ; 1
2

[x2] + 1
2

[y2]
}

,

it would receive a vanishing probability σε1 (b1z1) of higher order, vi-

olating condition (1.6). Therefore the introduction of the randomly

redundant strategy [b1z1] for player 1 changes player 2’s strategic be-

havior: now [x2] is a better response than [y2] to σε1 and the equilib-

rium
{

[a1·] ; 1
2

[x2] + 1
2

[y2]
}

is not a proper equilibrium of the modified

game.2 Note, however, that the strategy [b1z1] would be preferred by

player 1 to neither [b1x1] nor [b1y1] if his belief δ about the choice of [x2]

lied outside the compatible set
[

1
4
, 3

4

]
3. Therefore player 2 should re-

gard [b1z1] as a third choice strategy for player 1 and assign to it, in any

ε-approximation of the equilibrium, a vanishing probability σε1 (b1z1)

lower (by a multiplicative factor ε strictly positive and arbitrarily close

to zero) than both σε1 (b1x1) and σε1 (b1y1). Therefore, the vanishing prob-

abilities of the two strategies [b1x1] and [b1y1] can be tied independently

of the strategy σ2 actually chosen by player 2 within G[a1·] and the in-

troduction of the randomly redundant strategy [b1z1] does not imply

the violation of condition (1.6).

2In Myerson’s approach the choice of a specific totally mixed strategy σε2 by player
2 plays a crucial role, since in an ε-proper equilibrium each player 1’s pure strategy
is assigned a probability given σε2.

3The compatible set is closed and convex being the solution of a finite system of
linear inequalities. Therefore, the other sets of beliefs are

(
3
4 ; 1
]

and
[
0, 14
)
.
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1.2 Refined equilibria

Consider a finite n player game Γ =
{
I, {Σi}i∈I , {ui}i∈I

}
, where I

is the finite set of players indexed by i, Σi is player i’s compact, convex
strategy-polyhedron (in Euclidean space) being Si his pure strategy set
and ui his multilinear payoff function defined on Σ =

∏
i∈I

Σi.

Let A0
i =

{
G0
si

}
si∈Si

be the collection of all convex and compact
sets4 G0

si
= BR−1

i (si) := {σ−i ∈ Σ−i|BRi (σ−i) ∩ si 6= ∅} with si ∈ Si

and G0
si
⊆ Σ−i.

Given the minimal semigroup Θ0
i generated by A0

i with set intersec-
tion ∩ as binary operation, define Ψ0

i as the collection of all orderings
over the sets A0

i ∈ Θ0
i such that for any pair (A0

i , Â
0
i ) ∈ Θ0

i × Θ0
i , if

A0
i ⊆ Â0

i then Â0
i is ranked above A0

i .

For every A0
i ∈ Θ0

i let A1
i = BR−1

i (
⋂
j 6=i
πi
(
BR−1

j (πj (A0
i )))
)

with πj :

Σ−i → Σj and πi : Σ−j → Σi the canonical projection functions. The
sets Ani are defined recursively for every n ∈ N.

Indicate with Ψn
i the nth collection of all orderings over the sets

A0
i ∈ Θ0

i such that for any pair (A0
i , Â

0
i ) ∈ Θ0

i ×Θ0
i , if Ani ⊆ Âni then Â0

i

is ranked above A0
i .

Finally introduce, for every n ∈ N, a correspondence F n
i : Ψn

i →
Ωi where Ωi is the set of all orderings ωi of any set of K = |Θ0

i |, not
necessarily distinct, pure strategies in Si. For each ordering ψi ∈ Ψn

i ,
define F n

i (ψi) as the set of all orderings in Ωi such that A0
i in ψi and si

in ωi are identically ranked only if A0
i ⊆ G0

si
.

For every ordering ωi define a mixed strategy σωi
such that each

strategy si in ωi is played with a probability equal to (1−ε)εk−1

1−εK where
k is its position in the ordering ωi and ε a strictly positive constant
arbitrarily close to zero.

4To define G0
si the lower inverse of a correspondence is adopted. If the upper

inverse were considered then G0
si = BR−1

i (si) := {σ−i ∈ Σ−i|BRi (σ−i) = si}.



1.2. REFINED EQUILIBRIA 15

Define S̄i as the collection of all (mixed) strategies in Σi each corre-

sponding to an ordering in
⋂
n∈N

F n
i (Ψn

i ).

LEMMA 1.2.1. For any pair (Ani , Â
n
i ), if Ani ⊆ Âni for some n ∈ N, then

there does not exist an integer m > n such that Âmi ⊂ Ami . Thus the set⋂
n∈N

F n
i (Ψn

i ) is not empty.

Proof. If Ani ⊆ Âni then for every player j 6= i the canonical projection
πj (Ani ) is a subset of πj(Âni ). It comes easily that BR−1

j (πj (Ani )) ⊆
BR−1

j (πj(Â
n
i )) for every player j 6= i given BR−1

j

(
πj

(
Ãni

))
= {σ−j ∈

Σ−j |BRj (σ−j) ∩ πj
(
Ãni

)
6= ∅

}
. Finally, given any two pairs of sets

(X, Y ) and (X̂, Ŷ ) with X ⊆ X̂ and Y ⊆ Ŷ we have X ∩ Y ⊆ X̂ ∩ Ŷ .
Therefore An+1

i ⊆ Ân+1
i .

Definition 1. An ε-refined equilibrium is any equilibrium of the fictitious
game Γ̃ =

{
I,
{
S̄i
}
i∈I , {ui}i∈I

}
.

Definition 2. A strategy profile (σ1, · · · , σn) ∈ ∆S is a refined equilibrium
iff it is the limit of a sequence of ε-refined equilibria.

This definition refines the intuition presented in the introductory

examples: when a player considers the orderings over his opponent’s

beliefs he should restrict himself to the ones maximizing his expected

utility given his own strategy. This setting seems a natural choice since

backwards induction is one of the requirements to be verified.

1.2.1 Explanatory example

Consider the normal form game represented in Figure 1.6 and, given

α2 = Pr (x2), define the minimal semigroup Θ0
1 generated by the collec-

tion A0
1 =

{
G0
si

}
si∈Si

and by the set intersection ∩ as binary operation.
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Θ0
1 =



A0
1 =


A0
i,1 = G0

[a1·] =
{

1
4
≤ α2 ≤ 3

4

}
A0
i,2 = G0

[b1x1] =
{

3
4
≤ α2 ≤ 1

}
A0
i,3 = G0

[b1y1] =
{

0 ≤ α2 ≤ 1
4

}
A0
i,4 = G0

[a1·] ∩G
0
[b1x1] =

{
α2 = 3

4

}
A0
i,5 = G0

[a1·] ∩G
0
[b1y1] =

{
α2 = 1

4

}
A0
i,6 = ∅

Consider the randomized strategy [b1z1] = 1
2

[a1·] + 1
2

[b1y1]: the cor-
responding compatible set G0

[b1z1] is G0
[a1·] ∩ G

0
[b1y1]. More generally the

introduction of any mixed strategy does not affect Θ0
1.

Given Θ0
1 derive the collection of all admissible orderings:

Ψ0
1 =


ψ1 = A0

i,1 � A0
i,2 � A0

i,3 � A0
i,4 � A0

i,5 � A0
i,6

ψ2 = A0
i,2 � A0

i,1 � A0
i,3 � A0

i,4 � A0
i,5 � A0

i,6

ψ3 = A0
i,3 � A0

i,2 � A0
i,1 � A0

i,4 � A0
i,5 � A0

i,6
...

Finally define the strategy orderings F 0
1 (Ψ0

1) corresponding to each
ψi:

F 0
1

(
Ψ0

1

)
=



F 0
1 (ψ1) =


a1· � b1x1 � b1y1 � b1x1 � a1· � b1x1

a1· � b1x1 � b1y1 � a1· � b1y1 � b1y1

a1· � b1x1 � b1y1 � b1x1 � b1y1 � b1x1
...

F 0
1 (ψ2) =


b1x1 � a1· � b1x1 � a1· � b1x1

b1x1 � a1· � b1y1 � a1· � b1y1 � b1y1

b1x1 � a1· � b1y1 � b1x1 � b1y1 � b1x1
...

...

For every set A0
i,h the corresponding set A1

i,h has to be defined. First
consider the set A0

i,1 = G0
[a1·] =

{
1
4
≤ α2 ≤ 3

4

}
.

ThenBR−1
2

(
A0
i,1

)
= {(1− β1 − β2) [a1·] + β1[b1x1] + β2[b1y1]|β2 = β1}
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and A1
i,1 = BR−1

1

(
BR−1

2

(
A0
i,1

))
= A0

i,1.
Consider, on the other hand, A0

i,2 = G0
[b1x1] =

{
3
4
≤ α2 ≤ 1

}
. The set

BR−1
2

(
A0
i,2

)
is given by {(1− β1 − β2) [a1·] + β1[b1x1] + β2[b1y1]|β2 ≥ β1}

and BR−1
1

(
BR−1

2

(
A0
i,2

))
=
{
α2 = 3

4

}
. Thus the mixed strategies cor-

responding to the orderings in F 0
1 (ψ2) are not part of the strategy set

S̄1.

1.2.2 Properties

Proposition 1 (Existence). Every normal form game Γ has a refined equilib-
rium.

Proof. Existence comes immediately given the constructive definition
of ε-refined equilibria and lemma 1.2.1.

Proposition 2 (Admissibility). In every refined equilibrium the players’
strategies are undominated.

Proof. If an equilibrium strategy si is weakly dominated by s̃i then
Gsi ⊂ Gs̃i and consequently will never be ranked above it.

Proposition 3 (Invariance). Every refined equilibrium is invariant with
respect to the introduction of a randomly redundant strategy.

Proof. Given the initial game Γ create a new game Γ̂ by introducing a
randomly redundant strategy ŝi for some player i with Ĝ0

ŝi
6= ∅5. If

a randomized strategy σi is a best reply to a strategy profile σ−i then
every pure strategy si in the support of σi is a best reply to σ−i as well.
Conversely, if every si in the support of σi is a best reply to σ−i also σi
is a best response. Thus Ĝ0

ŝi
∈ Θ0

i and Θ0
i = Θ̂0

i since Ĝ0
ŝi

= ∩
si∈Sŝi

G0
si

where Sŝi is the set of pure strategies in the support of the mixed strat-
egy σi ∈ ∆Si payoff equivalent to ŝi. As a consequence, the set Ψ0

i

5With a slight abuse of notation all the sets and correspondences relative to the
new game Γ̂ are identified by hat as superscript.
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remains unchanged i.e. Ψ̂0
i = Ψ0

i and any new pure ordering in Ω̂0
i is

a linear combination of some pure orderings in the corresponding set
Ω0
i of the original game.

Now assume that Ĝ0
ŝi

= ∅. If ∅ ∈ Θi then the proof just outlined ap-
plies. Suppose, on the other hand, that ∅ /∈ Θi. This in turn implies
that ∩

si∈Si

G0
si
6= ∅. Therefore for any randomly redundant strategy s̃i it

must be G0
s̃i
6= ∅, hence a contradiction.

The introduction of the randomly redundant strategy ŝi also modifies
the set of possible beliefs of any other player j 6= i. However, any set
G0
sj

in the original game Γ is just the projection on Σ−j of the corre-
sponding set Ĝ0

sj
with projection function p : Σ̂i × Σ−i → Σ such that

p (σ̂i, σ−i) = σ if and only if (σ̂i, σ−i) and σ are payoff equivalent for
every player i.

Proposition 4 (Properness). The set of refined equilibria is not a subset of
the set of proper equilibria.

Figure 1.8: Game with refined not proper equilibrium

Game A1.1 presented in Figure 1.3 proves that a proper equilibrium
is not necessarily a refined one. Consider now the normal form game
represented in Figure 1.8: the equilibrium {[T ] , [L]}, while refined, is
not proper. However, this equilibrium seems to be reasonable since it
becomes a proper equilibrium once player 2’s dominated strategy [R]

is deleted. Note that Proposition 4 implies that the concept of refined
equilibria is not a refinement of proper equilibria. This is not surpris-
ing since otherwise invariance would be violated.
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Proposition 5 (Backwards Induction). The intersection of the sets of re-
fined and sequential equilibria might be empty.

Proof. The sets of sequential equilibria of two games with the same re-
duced normal form that differ just for a randomly redundant strategy
might have empty intersection. Thus, given Propositions 3 and 4, a
game can be constructed with a unique refined equilibrium that is not
sequential.

If a refined equilibrium were always in a stable set of equilibria

as defined in Mertens [1989] including, by definition, a proper hence

sequential equilibrium, Proposition 5 would be of minor importance.

Unfortunately, the result presented in Proposition 6 excludes this case.

Proposition 6 (Elimination of dominated strategies). A refined equilib-
rium of a game Γ̄ obtained from the original game Γ by deleting a dominated
strategy doesn’t always belong to the same connected component of Nash equi-
libria a refined equilibrium of Γ belongs to.

First note that a player i’s dominated strategy si can be concealed,

without changing the strategic structure of the game, by the introduc-

tion of a zero sum subgame with a unique equilibrium strategy pay-

off equivalent to si. The game presented in Figure 1.9 is a modified

version of the game proposed in Figure 1.3: player 1’s dominated

strategy [B] has been replaced by a zero sum game; the unique equi-

librium of the zero sum game is
{

1
2

[B1] + 1
2

[B2] ; 1
2

[L] + 1
2

[C]
}

where
1
2

[B1] + 1
2

[B2] is payoff equivalent to strategy [B]. Therefore there is no

reason to expect different sets of refined equilibria in the two games.

However since strategies [B1] and [B2] are undominated the sets G0
B1

and G0
B2

are not empty. The sets G1
B1

and G1
B2

are to be considered to

exclude σ∗ = {[T ] , [R]} as a refined equilibrium. However the role of

dominated strategies is much more involved.
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Figure 1.9: Game with concealed dominated strategy

Note that concealing a dominated strategy implies that it still re-

mains, indirectly, part of the game. Intuitively one should also expect

that the elimination of a dominated strategy should have no impact on

a Nash equilibrium refinement. The consequences of the elimination

of dominated strategies has been widely discussed in Kohlberg and

Mertens [1986] recognizing that this intuitive idea is wrong. Consider

the game represented in Figure 1.10: the equilibrium (a1, x2) is proper

and refined. However, if the dominated strategy c1 were dropped the

only refined equilibrium would be (b1, z2). This is a negative result

since this equilibrium is not even in the connected component includ-

ing (a1, x2).

A slight variation of the model, obtained by adopting the lower in-

verse of a correspondence in the definition of the sets {Ani } for every

player i and every n, would solve the example. However this modifi-

cation could lead to violate the property of existence.

1.2.3 Conclusions

The evaluation of refined equilibria is controversial. As a main re-

sult the invariance property is satisfied improving on the concept of

proper equilibrium. This result stems from a setting that is closer to

the forward induction than the backwards induction approach: a sin-
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Figure 1.10: Game E1.1

gle valued solution concept that always conforms with backwards in-
duction cannot verify the property of invariance. However not even
refined equilibria satisfy any reasonable formulation of the property of
iterated deletion of dominated strategies. It remains a cue for future
research whether a slight modification of the model could lead to more
promising results.





Chapter 2
Strategic stability of equilibria:

the missing paragraph

2.1 Introduction

As recalled in the previous chapter, Kohlberg and Mertens [1986]
defined the concept of strategic stability of Nash equilibria by intro-
ducing a set of desirable properties that an equilibrium should satisfy:

Existence: every game has at least one solution;

Connectedness: every solution is connected;

Backwards induction: a solution of a tree contains a backwards in-
duction equilibrium of the tree;

Invariance: a solution of a game is also a solution of any game with
the same reduced normal form;

Admissibility: the players’ strategies are undominated at any point
in a solution;

Iterated dominance and forward induction: a solution of a game Γ con-
tains the solution of any game Γ̃ obtained from Γ by deleting a strategy
that is either dominated or that is always an inferior response in every
equilibrium of the set.

23
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Among others, admissibility and iterated dominance, jointly con-
sidered, lead naturally to conclude that just a set of Nash equilibria
could fit strategic stability. Given game A2.1, represented in Figure 2.1,
if strategy M were deleted, then, by admissibility, just (2, 2) would be
strategically stable. Conversely, if B were deleted, the unique admis-
sible equilibrium would be (3, 2). Thus, a strategically stable set of
equilibria should include both (2, 2) and (3, 2).

Figure 2.1: Game A2.1

Kohlberg and Mertens [1986] proposed three different definitions
of stable sets trying to satisfy all the desirable properties.

For the sake of convenience recall the definitions of hyperstable,
fully stable and stable sets of equilibria and their flaws:

Definition 3. Q is a hyperstable set of equilibria of a game Γ if it is minimal
with respect to the following property:
Q is a closed set of Nash equilibria of Γ such that, for any equivalent game,
and for any perturbation of the normal form of that game, there is a Nash
equilibrium close to Q.

Existence of hyperstable sets proves that, while an essential single
valued equilibrium might not exist, an essential set of equilibria does
exist for any normal form game.

However an hyperstable set might violate admissibility. Fully sta-
ble sets are then introduced to improve on hyperstability by restricting
the collection of allowed perturbations to those which arise from strat-
egy perturbations:
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Definition 4. Q is a fully stable set of equilibria of a game Γ if it is minimal
with respect to the following property:
Q is a closed set of Nash equilibria of the game Γ satisfying: for any ε > 0

there exists some δ > 0 such that, whenever each player’s strategy set is
restricted to some compact convex polyhedron in the interior of the simplex at
an (Hausdorff) distance less than δ from the simplex, then the resulting game
has an equilibrium point ε-close to Q.

While every fully stable set of equilibria of a normal form game al-
ways contains a proper1 (hence perfect and sequential in every exten-
sive form game with that normal form) equilibrium, still admissibility
might be violated.

This flaw is due to the fact that each player’s strategic choice is
allowed to be affected by perturbations of his own strategies.

Then the authors allowed just for perturbations in which every
pure strategy si of each player i is perturbed in the same amount to-
wards the same completely mixed strategy. This led to the definition
of stable sets of equilibria:

Definition 5. Q is a stable set of equilibria of a game Γ if it is minimal with
respect to the following property:
Q is a closed set of Nash equilibria of the game Γ satisfying: for any ε > 0

there exists some δ0 > 0 such that for any completely mixed strategy vector
σ1 . . . σn (n players) and for any δ1 . . . δn (0 < δi < δ0), the perturbed game
where every strategy si ∈ Si of player i is replaced by (1− δi) si + δiσi has
an equilibrium ε-close to Q.

However stable sets might not satisfy the backwards induction re-
quirement.

The first contribution of this paper is the proof that a natural gener-
alization of the definition of stable sets of equilibria, named F - stable

1See Myerson [1978].
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sets, satisfies all the desirable properties proposed by Kohlberg and
Mertens [1986]: the backwards induction requirement is easily satis-
fied, without violating admissibility, by allowing every pure strategy
to be replaced by a set of its perturbations instead of a unique one.

However F - stable sets might violate the player splitting property
as introduced by Mertens [1989]:

Player splitting: given a partition of the information set of some
player, such that no play intersects two different partition elements,
the new game, where this player is replaced by a set of agents each
managing one of the partition elements, has the same stable sets as the
old game.

This flaw is not surprising since every agent of a splitted player will
choose his perturbed strategy independently just to maximize his indi-
vidual payoff. Conversely, a single player would correlate his agents
mistakes in order to maximize his overall payoff.

Then the tension between the properties of backwards induction
and player splitting seems the real knot to be untied. This is confirmed
also by the discussion in Hillas [1990].

This conflict is solved by the definition of G - stable sets where the
collection of games exploited to identify a strategically stable set of
equilibria of a normal form game Γ includes perturbations of a class of
new games each obtained from Γ by introducing inessential transfor-
mations.

2.2 F - stable equilibria

Let Γ =
{
I, {Σi}i∈I , {ui}i∈I

}
be a finite n player game, where I is

the finite set of players indexed by i, Σi is player i’s compact, convex
strategy-polyhedron (in Euclidean space) being Si his pure strategy set
and ui his multi linear payoff function defined on Σ =

∏
i∈I

Σi.
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Define the set Pε of perturbations η as Pε =
{
ε · ~σ| 0 < ε < 1, ~σ ∈ Σk\

∂Σk, k ∈ Z
}

where Σk is the k-fold Cartesian product of Σ with k inte-
ger number.

Let ηi = ε · ~σi be the k-dimensional vector that represents the pro-
jection onto Σk

i \∂Σk
i of the perturbation η = ε · ~σ.

Given η ∈ Pε let τη (si) = (1− ε) ~si+ηi be the k-dimensional strategy
vector where ~si is the k-dimensional vector with each entry equal to si.

Define Γη =
{
I,
{

Σ̄i

}
i∈I , {ui}i∈I

}
as the game obtained from Γ by

replacing each pure strategy si of each player i by the vector τη (si).
The definition of stable set of equilibria is then modified accord-

ingly:

Definition 6. Q is an F - stable set of equilibria of a game Γ if it is a set of
equilibria minimal with respect to the following property F:

Property (F). Q is a closed set of Nash equilibria of Γ satisfying: for any
δ > 0 there exists some ε0 > 0 such that any perturbed game Γη with η ∈ Pε
and ε0 > ε > 0 has an equilibrium δ-close to Q.

Note that the proposed definition is halfway the definitions of fully
stable and stable set of equilibria. In particular, the new collection of
strategy polyhedral includes all those allowed by the definition of sta-
ble equilibria as special cases in which k = 1, and is a proper subset of
the ones defining a fully stable set.

2.2.1 Properties

Given the definition of F - stable equilibria, it has to be proved that
it is consistent with the properties defining a strategically stable set of
equilibria:

Proposition 7 (Existence). Every normal form game Γ has an F - stable set
of equilibria.
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Proof. Existence of F - stable sets comes from existence of a fully stable
set of equilibria for any normal form game Γ as proved in Kohlberg
and Mertens [1986]. The definition of F - stable equilibria is less de-
manding than the definition of fully stable equilibria since a narrower
set of perturbations is allowed.

Proposition 8 (Connectedness). Every game has anF - stable set contained
in a single connected component of the set of Nash equilibria.

Proof. Kohlberg and Mertens [1986] proved that every game has an
hyperstable set of equilibria contained in a single connected compo-
nent of the set of Nash equilibria. Thus, since every hyperstable set
includes an F - stable set of equilibria, every normal form game has an
F - stable set which is contained in a single connected component of
the set of Nash equilibria.

Proposition 9 (Backwards induction). An F - stable set of any finite nor-
mal form game Γ always includes a proper equilibrium of Γ.

Proof. Given Γ construct a perturbed game Γ̃ as follows: first for each
player i ∈ I define the set Ei =

{
eij ∈ Sni |j = 1, . . . n!

}
of all permuta-

tions eij of his pure strategies, where Sni is the n-fold Cartesian product
of Si and n = |Si|.

Then, for every player i, construct, from each ordering eij , a com-
pletely mixed strategy σi

(
eij
)

such that, when σi
(
eij
)

is chosen, each
strategy si ∈ Si is played with probability εk−1 (1− ε) / (1− εn), where
k corresponds to its position in the ordering eij .

Given the set Ẽi =
{
σi
(
eij
)
|eij ∈ Ei

}
of the n! totally mixed strate-

gies for every player i, define a new game Γ̃ in which each strategy si
of each player i is replaced by the following set of perturbed strategies:

{
(1− ε) si + εσi

(
eij
)}

σi(eij)∈Ẽi
(2.1)

In the new game Γ̃, when a player chooses a pure strategy (1− ε) si+
εσi
(
eij
)

he actually selects with probability (1− ε) the strategy si and,
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with probability ε a lottery over a given ordering of his pure strategies
in Si.

Pick an equilibrium point of the new game in the neighborhood of
its set of equilibria. As proved in Kohlberg and Mertens [1986] it is an
ε-proper equilibrium of the initial game.

Proposition 10 (Invariance). Every F - stable set is also an F - stable set of
any equivalent game (i.e. having the same reduced normal form).

Proof. From a geometrical point of view, the definition of F - stable
equilibria considers just polyhedra Σ̄i within the strategy simplex of
each player i that are the convex hull of any finite collection of poly-
hedra allowed by the definition of stable sets of equilibria in Kohlberg
and Mertens [1986].

If a new strategy ŝi, linear combination of a finite number of pure
strategies in Si, were explicitly introduced as an additional pure strat-
egy in Si it would be perturbed as any other pure strategy.

Then, given any convex strategy polyhedron Σ̄i allowed by the def-
inition of F - stable sets in the original game Γ, each strategy in τη (ŝi)

would be represented by a point on a side of Σ̄i.

Proposition 11 (Admissibility). Given any equilibrium in an F - stable set,
every equilibrium strategy for every player i is undominated.

Proof. It is well known that a stable set of equilibria satisfies admissibil-
ity. Despite a larger set of perturbations is now allowed, any F - stable
set still satisfies this property since each ~σ in Pε is in the interior of Σk

and all strategies in Si for every player i are identically perturbed.

Given these last two properties, one can verify immediately the
(i, α)-ordinality of F - stable sets, using Theorem 2 in Mertens [2004].

Proposition 12 (Iterated dominance and forward induction). (A) An
F - stable set of a game Γ contains the F - stable set of any game Γ̄ obtained
from Γ by deleting a dominated strategy and (B) an F - stable set of a game
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Γ contains the F - stable set of any game Γ̃ obtained from Γ by deleting a
strategy that is an inferior response in all the equilibria of the set (Forward
induction).

Proof. Given a perturbation Γ̄η of the game Γ̄ without the dominated
strategy s̄i, construct a close-by perturbation in two steps: first intro-
duce s̄i in the strategy set S̄i of player i and perturb it like any other
strategy of the game. Then construct the perturbed game Γη (z) by
slightly perturbing any of player i’s strategies towards s̄i by z. The
game Γη (z) is thus a perturbation of the initial game Γ. Obviously in
no equilibrium of Γη (z) the eliminated strategy will be played and tak-
ing the limit for z → 0 of these equilibria will give an equilibrium of
Γ̄η close to the F - stable set.

The proof of the part (B) of Proposition (12) is identical and thus
omitted.

In Mertens [1989] two additional properties were added to the ones
proposed in Kohlberg and Mertens [1986]:

Small worlds and decomposition: a strategically stable set of equilibria
should be immune to the introduction of irrelevant players.

A subset J ⊂ I of players represents a small world if their payoffs
do not depend on the strategies of the outside players in I\J .

Let ΓJ =
{
J, {Σi}i∈J , {ui}i∈J

}
be the game played by the insiders.

For a small world the outside players should be considered irrelevant
and should have no impact on the stable sets of equilibria of ΓJ .

Similarly, a game that consists of N small worlds should decom-
pose. If each of N disjoint sets of players constitutes a small world and
plays a different game in a separated room, then it should not matter
if the N games were analyzed jointly or separately.

Proposition 13 (Small worlds). If J is a small world in Γ, then a set of
equilibria is an F - stable set of the game ΓJ if and only if it is the projection
of an F - stable set of the game Γ.
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Proposition 14 (Decomposition). If for a game Γ both J and I\J constitute
small worlds in Γ, then a set Q of equilibria is an F - stable set of the game Γ

if and only if Q = QJ × QI\J with QJ an F - stable set of the game ΓJ and
QI\J an F - stable set of the game ΓI\J .

Both these properties2 are self evident since, given any small world
J in I , when every single strategy of each player i ∈ J is replaced by
a set of its perturbations the set J of players remains a small world in
Γη.

Player Splitting: given a partition of the information set of some
player, such that no play intersects two different partition elements,
consider the new game obtained by letting a different agent of this
player manage each of these partition elements, and receive the same
payoff as this player for those play that intersect his own information
sets while he receives an arbitrary payoff on the other plays. This new
game, where this player is replaced by these agents, should have, ac-
cording to Mertens [1989], the same stable sets as the old game.

Unfortunately, this property is not satisfied for F - stable sets since
the agents of a single player maximize their payoffs independently
while a single player correlates his agents strategies and mistakes.

The sender - receiver game represented in Figure 2.2 proposed by
Hillas [1990] clarifies the point. First consider the game as a five player
game and look just at the equilibria in which all the types of the sender
play strategy L. The simplex in Figure 2.3 represents the receiver’s
strategy space and the corresponding choices by the sender.

The collection of stable sets of equilibria, according to the origi-
nal definition in Kohlberg and Mertens [1986], consist of four pairs
{W,Y } , {W,Z} , {X, Y } , {X,Z}3. Since every agent’s strategy set con-
sists of just two strategies the KM-stable sets and the F -stable sets co-
incide.

2For a complete discussion of both properties see Mertens [1992].
3The letters {X,Y,W,Z} refers to the points labeled in Figure 2.3.
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Figure 2.2: Hillas signaling game

This is no longer true if the sender is regarded as a single player.
Consider, as an example, the pair of strategies (RLLL;LLLR). For
every strategy of the receiver in XW , RLLL is strictly preferred, by
player i, to LLLR.

In other terms, for player i, a mistake by his agent a is less costly
than a mistake by his agent d. Thus when choosing a perturbed strat-
egy he would play the one with RLLL receiving a higher probability
than LLLR. On the other hand, agents aim just at maximizing their
own utility and have no chance to coordinate their strategies. Since,
given a strategy in XW , the sender will never willingly choose R at
either c or d the receiver, at his information set, should put all weight
on the types a and b which upsets the equilibrium.

Therefore, while the set of perturbed games has to be enlarged to
satisfy the property of backward induction, when this happens in a
natural way by replacing every pure strategy with a set of its perturba-
tions, the player splitting property is violated. This approach and re-
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Figure 2.3: Hillas signaling game: sender’s strategic choices

sults, while reached independently, are analogue to the ones proposed

in an unpublished paper by Reny4.

2.3 On the introduction of dominated strate-
gies and irrelevant players

The effect of the introduction of a new dominated strategy within

the strategy set of a player has been widely discussed by Kohlberg and

Mertens [1986]:

(. . .) One might think that the iterated dominance requirement should
apply not just for deletion but also for addition of dominated strategies, i.e.
that a strategically stable set of equilibria in a game G must be contained
in a strategically stable set of equilibria in any game G′ obtained from G by
addition of a dominated strategy. However we disagree (. . .).

To support their thesis, Kohlberg and Mertens [1986] proposed the

game represented in Figure 2.4. Every single point on the interval (3, 2)

to (2, 2) is a strategically stable equilibrium.

4Prof. P. Reny private communication.
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Figure 2.4: Game A2.2

However when the dominated strategy [M ] is added (Figure 2.5)

by admissibility only (3, 2) is strategically stable.

Figure 2.5: Game A2.3

More interestingly, when a second dominated strategy [B] is intro-

duced (Figure 2.6) then any strategically stable set must include both

(3, 2) and (2, 2). Thus the introduction of dominated strategies might

shrink the number of stable sets not their width.

The property of Iterated dominance and Forward Induction as de-

fined in Kohlberg and Mertens [1986] states this formally.

Figure 2.6: Game A2.4

Consider, as a second example, the three player game proposed

by Gul where Player 1 starts by either taking an outside option [s1
1]

which yields payoffs (2, 0, 0) or moving into a simultaneous move sub-

game represented by Figure 2.7 where each of the three players has

two choices.
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It is well known that while this game admits a unique sequential equi-

librium σ∗ =
{

1
2

[s2
1] + 1

2
[s3

1] ; 1
2

[s1
2] + 1

2
[s2

2] ; 1
2

[s1
3] + 1

2
[s2

3]
}

there exists a

stable set of equilibria {[s1
1] ; [s1

2] ; [s1
3]}∪{[s1

1] ; [s2
2] ; [s2

3]} that doesn’t con-

tain it.

Figure 2.7: Gul’s game: simultaneous move sub-game

The sequential equilibrium σ∗ is preferred by player 1 to any equi-

librium within the stable set S. However, although player 1 moves

first, there is no chance for him to induce σ∗. Consider the set of per-

turbed strategies
{
ŝj1
}3

j=1
with ŝj1 = (1− ε)

[
sj1
]

+ ε
(

1
2

[s2
1] + 1

2
[s3

1]
)

for

every j = {1, 2, 3}.
Given the choice of ŝ1

1, even if the equilibrium strategy σ∗i = 1
2

[s2
1] +

1
2

[s3
1] is played within the subgame reached with vanishing probability

ε, there exists a Nash equilibrium in which players 2 and 3 play, respec-

tively, s1
2 and s1

3. Given [s1
2, s

1
3], player 1 would confirm the choice of ŝ1

1

since the perturbation of his pure strategies is unique and cannot be

modified.

Consider now the introduction of a dominated strategy s4
1 for player

1. First, equation (2.2) implies that strategy s4
1 is strictly dominated by

the outside option given a value of ε positive and arbitrarily close to

zero. Second, equation (2.3) defines the new payoffs given the dom-

inated strategy s4
1 and implies, for instance, that the strategy profile

(s4
1, s

1
3) corresponds, for player 2, to the strategy profile (s2

1, s
1
3) in the

original game.
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Figure 2.8: Gul’s game: new dominated strategy s4
1

u1

(
s4

1, s−1

)
= u1

(
s1

1, s−1

)
− ε for ∀s−1 ∈ S−1 ε > 0 (2.2)

u2

(
s4

1, ·, s1
3

)
= u2

(
s2

1, ·, s1
3

)
; u2

(
s4

1, ·, s2
3

)
= u2

(
s3

1, ·, s2
3

)
;

u3

(
s4

1, s
1
2, ·
)

= u3

(
s3

1, s
1
2, ·
)

; u3

(
s4

1, s
2
2, ·
)

= u3

(
s2

1, s
2
2, ·
)

(2.3)

Loosely speaking the game represented in Figure 2.8 is strategically

equivalent, for players 2 and 3, to the subgame in Figure 2.7: given s4
1,

if player 3 played s1
3 then player 2 would play s1

2 = BR2 (s4
1, s

1
3) with

associated payoff 3.

Given s1
2 player 3 would play s2

3 with associated payoff 1 that is

what he would get in the original subgame if, once given the strategy

profile (s1
3, s

1
2) as initial point, player 1 could freely choose between s2

1

and s3
1. Since BR1 (s1

3, s
1
2) = s3

1 then player 3 would deviate to s2
3 with

u3 (s3
1, s

1
2, s

2
3) = 1.

In other terms the dominated strategy mimics what would happen

in the original game when player 1’s outside strategy s1
1 is replaced by

an n-tuple of differently perturbed strategies as in the fictitious game

devised to prove the backwards induction property for F - stable equi-

libria.
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Thus if each player i’s strategy were perturbed towards s4
1 with

the highest vanishing probability the resulting perturbed game would

have σ∗ as its unique equilibrium.

Finally, given the initial set of players I , define any additional player

j as irrelevant if his strategic choices don’t affect player i’s utility for

every i ∈ I .

It is obvious that if a finite collection J of M ≥ 0 irrelevant players

were added to I , a strategy profile σI is an equilibrium of the initial

game if and only if it is the projection on ΣI =
∏
i∈I

Σi of an equilibrium

of the new game.

2.4 G - stable equilibria

Given Γ =
{
I, {Si}i∈I , {ui}i∈I

}
, define a new collection of games

in two steps: first add to I a collection J of M ≥ 0 irrelevant players

with H = I ∪ J . Then define, for every player i ∈ I and every strategy

si ∈ Si, a finite set Φsi including both si and Ni new strategies {s̄i,n}Ni

n=1

strictly dominated by si with Ni ≥ 1.

Let S̃i be player i’s new strategy set obtained by adding to Si the

finite collection S̄i of |Si| ×Ni dominated strategies and define the pro-

jection function πi : S̃i → Si from player i’s new strategy set to Si with,

for every s̃i ∈ S̃i, πi (s̃i) = si if and only if s̃i ∈ Φsi .

Given εi strictly positive and arbitrarily close to zero, and any real

valued multilinear functions ūi,n defined on
∏
i∈H

Σi, determine for every

{sj}j 6=i ∈ S̃−i, the payoffs of each nth strictly dominated strategy s̄i,n in

every Φsi as:

ui,n(s̄i,n, {sj}j 6=i) = εi(ūi,n(πi(s̄i,n), {fj,n (sj)}j 6=i) (2.4)

with fj,n : Σ̃j → Σj linear function independent of i. For any other
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player j we have:

uj(s̄i,n, {sz}z /∈{i,j} , sj) = uj(πi(s̄i,n), {πz(sz)}z /∈{i,j} , sj)

for ∀ {sz}z /∈{i,j} ∈ S̃−ij, ∀sj ∈ Sj and ∀j 6= i (2.5)

Condition (2.4) implies that, given values of every εi sufficiently
close to zero, each new strategy in {s̄i,n}Ni

n=1 is strictly dominated for
every player i.

Condition (2.5) excludes that any (weakly) dominated strategy sj ∈
Sj for any player j 6= i could become undominated given the introduc-
tion of new dominated strategies for his opponents.

Let ζ the collection of all games Γ̃ =
{
H,
{
S̃i

}
i∈H

, {ui}i∈H , {εi,

ūi,n, {fj,n}j 6=i
}Ni

n=1

}
i∈I

}
each obtained from Γ by adding any finite set

J of M irrelevant players and including in every strategy set {Si}i∈I a
finite collection S̄i of |Si|×Ni dominated strategies verifying conditions
(2.4) and (2.5).

For each game Γ̃ in ζ redefine the set Pε of perturbations η as Pε ={
ε · ~σ| 0 < ε < 1, ~σ ∈ Σ̄k

I\∂Σ̄k
I , k ∈ Z}where Σ̄I = ∆

∏
i∈I
S̄i and Σ̄k

I is the

k-fold Cartesian product of Σ̄I with k integer number.
Let ηi = ε · ~σi be the k-dimensional vector that represents the pro-

jection onto Σ̄k
i \∂Σ̄k

i of the perturbation η = ε · ~σ.
Given η ∈ Pε let τη (si) = (1− ε) ~si + ηi be the k-dimensional vector

of strategies replacing strategy si in player i’s strategy set S̃i where ~si
is the k-dimensional vector with each entry equal to si.

Let Γ̃η be the game obtained from Γ̃ by replacing each pure strategy
si ∈ S̃i of each player i in I by the vector τη (si).

The definition of stable set of equilibria is then modified accord-
ingly:

Definition 7. Q is a G - stable set of equilibria of a game Γ if it is a set of
equilibria, minimal with respect to the following property G:
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Property (G). Q is a closed set of Nash equilibria of Γ satisfying: for any
δ > 0 there exists some ε0 > 0 such that any perturbed game Γ̃η with η ∈ Pε
and ε0 > ε > 0 has an equilibrium whose projection onto ΣI =

∏
i∈I

Σi is

δ-close to Q.

2.4.1 Properties

Given the definition of G - stable equilibria its properties are now
analyzed:

Proposition 15 (Existence). Every normal form game Γ has a G - stable set
of equilibria.

Proof. Since the projection onto ΣI =
∏
i∈I

Σi of the set of equilibria of

each game in ζ coincides with the set of equilibria of the initial game
Γ, existence of G - stable sets comes easily from existence of an hy-
perstable set of equilibria for any normal form game as proved in
Kohlberg and Mertens [1986].

Proposition 16 (Connectedness). Every game has aG - stable set contained
in a single connected component of the set of Nash equilibria.

Proof. Kohlberg and Mertens [1986] proved that every game has an hy-
perstable set of equilibria contained in a single connected component
of the set of Nash equilibria. Thus, since every hyperstable set includes
a G - stable set of equilibria, every normal form game has a G - stable
set which is contained in a single connected component of the set of
Nash equilibria.

Proposition 17 (Backwards induction). A G - stable set of any finite nor-
mal form game Γ always includes a proper equilibrium of Γ.

Proof. Given the initial game Γ =
{
I, {Si}i∈I , {ui}i∈I

}
let M = 0 and

introduce for every player i and every strategy si ∈ Si a unique new
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dominated strategy s̄i,1 with S̄i the strategy set including just the new
dominated strategies.

Assume that fj,1 (sj) = πj(sj) for every sj ∈ S̃j , ūi,n = ui for every
player i ∈ I .

Thus player i’s payoff from any dominated strategy s̄i,1 in S̄i is ob-
tained by rescaling the payoff corresponding to π1(s̄i,1) in Γ by an iden-
tical factor εi.

Besides, by condition (2.5), every strategy s̄i,n is payoff equivalent
to πi (s̄i,n) for any strategy sj ∈ Sj and any player j 6= i in I .

Define a new game Γ̃ =
{
I,
{
S̃i

}
i∈I

, {ui}i∈I
}

with S̃i = Si
⋃
S̄i

and consider, for each player i, the set Ēi =
{
ēji ∈ S̄ni

}n!

j=1
of all per-

mutations ēji of his new dominated strategies, where S̄ni is the n-fold
Cartesian product of S̄i and n = |S̄i|.

Then, for every player i, construct, from each ordering ēji , a mixed
strategy σi

(
ēji
)

such that when σi
(
ēji
)

is chosen, each strategy in the
ordering ēji is played with probability (1−ε)εh−1

(1−εn)
being h its position in

ēji .
Given Ẽi =

{
σ
(
ēji
)
|ēji ∈ Ēi

}
, define Γ̂ as the game derived from

Γ̃ in which each strategy s̃i ∈ S̃i of each player i is replaced by the
following set of perturbed strategies:{

(1− εi) s̃i + εiσi
(
ēji
)}

σi(ēji)∈Ẽi
(2.6)

Therefore each player when choosing a pure strategy in the new game
Γ̂ actually chooses with probability (1− εi) a strategy in S̃i and, with
probability εi a lottery over a given ordering of his new dominated
strategies in S̄i.

The fictitious game Γ̂ is strategically equivalent to the one presented
in the proof of the property of backwards induction proposed for F -
stable equilibria even if we now consider orderings among strategies
in S̄i instead of Si.

Pick an equilibrium point of the new game Γ̂ in the neighbourhood



2.4. G - STABLE EQUILIBRIA 41

of its set of equilibria. It is an ε-proper equilibrium of the initial game.

Proposition 18 (Invariance). Every G - stable set is also a G - stable set of
any equivalent game (i.e. having the same reduced normal form).

Proof. The proof of invariance of G - stable sets is almost identical to
the one proposed for stable sets and F - stable sets since, in each game
Γ̃η, all strategies are identically perturbed.

However, for G - stable sets, it has to be considered the effect of the
introduction of a randomly redundant strategy on the set ζ .

Given the initial game Γ and any new game Γ̃ in the correspond-
ing set ζ , if a randomly redundant strategy ṡi were added to Si the
collection Φṡi of new strategies should be considered. Each strategy in
Φṡi , however, would correspond to a randomization of a finite set of
dominated strategies within the set S̃i defining Γ̃.

Besides, if a randomly redundant strategy ṡj were added to player
j’s strategy set with j 6= i, there would be no effect on the payoffs of
player i’s strategies in S̄i provided that, by construction, fj,n is a linear
function for every n.

Proposition 19 (Admissibility). Given any equilibrium in a G - stable set,
every equilibrium strategy for every player i is undominated.

Proof. For this property to be verified, condition (2.5) is crucial since,
as already pointed out, it ensures that a (weakly) dominated strategy
for player j could not be made undominated by the introduction of a
new dominated strategy for some player i 6= j.

Once this possibility has been excluded, the property comes easily
since, given Ni ≥ 1 for every player i ∈ I , de facto it is as if every
strategy si in Si were to be played with strictly positive probability in
every perturbed game.

Proposition 20 (Iterated dominance and forward induction). (A) A G -
stable set of a game Γ contains the G - stable set of any game obtained from Γ
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by deleting a dominated strategy and (B) a G - stable set of a game Γ contains
the G - stable set of any game obtained from Γ by deleting a strategy that is
an inferior response in all the equilibria of the set (Forward induction).

Proof. Given a perturbed game ˜̂
Γη derived from the initial game Γ̂

without the dominated strategy ŝi, construct a close-by perturbation
Γη (z) in two steps: first introduce the dominated strategy ŝi in the
strategy set Ŝi of player i. Perturb all strategies in Φŝi like any other

strategy in ˜̂
Γη. The introduction of ŝi implies Ni ≥ 1 new dominated

strategies. Let Ṡi the collection of all the dominated strategies ṡi,n with
πi (ṡi,n) = ŝi.

Then construct the perturbed game Γη (z) by slightly perturbing
any player i’s strategy towards a completely mixed strategy in Ṡi by z.
The game Γη (z) is a perturbation of the initial game. Obviously in no
equilibrium the dominated strategy ŝi will be played and taking the
limit for z → 0 of these equilibria will give an equilibrium of Γ̂η close
to the G - stable set.

The proof of the part (B) of Proposition (12) is identical and thus
omitted.

Since aG-stable set of a normal form game Γ is defined by consider-
ing, among others, games obtained from Γ by adding new dominated
strategies one might expect that a stronger version of the property of
iterated dominance holds. However for the property of admissibility
to be verified, just a subset of all possible dominated strategies is con-
sidered. Hence iterated dominance can be verified just in its original
formulation.

Proposition 21 (Small worlds and Decomposition). A G - stable set of
any finite game Γ satisfies small worlds and decomposition axioms.

Proof. This property is self evident given that the introduction of a set
of irrelevant players is one of the allowed modifications of the original
game Γ.



2.4. G - STABLE EQUILIBRIA 43

Proposition 22 (Player splitting). Given a partition of the information set
of some player, such that no play intersects two different partition elements,
consider the new game obtained by letting a different agent of this player man
each of these partition elements, and receive the same payoff as this player for
those play that intersect his own information sets while he receives an arbi-
trary payoff on the other plays. This new game, where this player is replaced
by these agents, has the same G - stable sets as the old game.

Given the initial game Γ create a new game Γa by splitting player
i into K agents indexed by k each managing one partition element of
his information set.

The main difference between the two games is that a single player
trembles in a completely correlated way while, once splitted, his agents
tremble independently. However, since only one partition of the game
is going to occur, only the marginal probabilities matter.

Consider player i’s set of new dominated strategies S̄i and, for
each nth new dominated strategy s̄i,n ∈ S̄i with payoffs defined by{
εi, ūi,n, {fj,n}j 6=i

}
, let πi (s̄i,n) its projection on Si.

With a slight abuse of notation indicate the behavioral strategy sik
for agent k implied by si = πi (s̄i,n) as sik = πik (s̄i,n). For every
strategy s̄i,n ∈ S̄i, introduce for every agent k of player i a domi-
nated strategy s̄ik,n with πik (s̄ik,n) = πik (s̄i,n) and payoffs defined by{
εik , ũik,n,

{
f̃j,n

}
j 6=ik

}
as follows:

uik,n

(
s̄ik,n, {sj}j 6=ik

)
= εik

(
ũik,n

(
πik(s̄ik,n),

{
f̃j,n (sj)

}
j 6=ik

))
(2.7)

with for every agent ik of player i:

ũik,n = ūi,n
εik = εi for ∀ik
f̃j,n (sj) =

{
fj,n (sj) ∀j 6= i
πik̂ (s̄i,n) ∀ik̂ 6= ik

(2.8)
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Thus the definition of kth agent’s payoff strategy associated to s̄ik,n
induces a correlation among player i’s agents mimicking player i’s
strategic choices. Similarly, given Nik dominated strategies for every
agent of player i,

∏
k∈K
|Nik | dominated strategies should be introduced

in the original game and player i’s corresponding payoffs can be ap-
propriately defined to replicate his agents’ strategic choices.

2.5 Conclusions

This chapter introduces, as major contribution, a new class of per-
turbed games that stem from games obtained by introducing irrele-
vant players and new dominated strategies in the original game.

Both variations have no effect on the set of equilibria but allow to
widen the resulting stable sets of equilibria up to satisfy all properties
proposed in Kohlberg and Mertens [1986] and in Mertens [1989].

It remains unclear, and a topic for further research, if the introduc-
tion of new properties might lead to prefer G - stable equilibria or M -
stable equilibria as proposed in Mertens [1989]. A first insight could
be offered by determining the geometric relation between the different
sets following the contribution by Govindan [1995].



Chapter 3
Stable correlated equilibria

3.1 Introduction

A game with communication arises when players have the oppor-

tunity to communicate with each other prior to the choice of their ac-

tions in the actual game.

In this setting, the presence of a trustful mediator is a particularly

powerful device since it allows players to implement correlated strate-

gies. The mediator privately recommends actions to each player ac-

cording to the realization of an agreed upon correlation device and

each player decides whether to obey the recommendation.

A correlated equilibrium, as defined in Aumann [1974], is a self-

enforcing correlated strategy: no player has an incentive to deviate

from the received recommendation given the information at her dis-

posal.

Formally, given a normal form game Γ =
{
I, {Si}i∈I , {ui}i∈I

}
, a cor-

related equilibrium is any strategy profile σ∗ in ∆S with S =
∏
i∈I
Si such

that for every player the following collection of incentive constraints

is satisfied:

45
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Σ
s−i∈S−i

σ∗ (si, s−i) (ui (si, s−i)− ui (ei, s−i)) ≥ 0 for ∀si ∈ Si and ∀ei ∈ Si
(3.1)

If at least one constraint were binding, the corresponding corre-

lated equilibrium might disappear if, for each player i, every strategy

had a strictly positive vanishing probability.

Thus Myerson [1986] introduced the concept of acceptable corre-

lated equilibria that is correlated equilibria in which the obedient be-

haviour by every player could still be rational when each player i al-

ways has a strictly positive vanishing probability εi of trembling so

deviating with respect to the mediator’s recommendation.

Acceptable correlated equilibria hinge on the related concept of ac-

ceptable strategies: a pure strategy si ∈ Si is acceptable if and only if

it can be rationally used by an obedient player i when the trembling

probabilities are arbitrarily close to zero.

Given the initial game Γ, an acceptable correlated equilibrium is

any correlated equilibrium of the game obtained from Γ by deleting

unacceptable strategies. Thus the set of acceptable correlated equilib-

ria is closed and convex.

Myerson [1986] proved that the set of weakly dominated strategies

is a subset of the set of unacceptable strategies. Therefore no weakly

dominated strategy is played with strictly positive probability in an

acceptable correlated equilibrium.

Figure 3.1: Game A3.1
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More interestingly, the set of unacceptable strategies might include
also undominated strategies. As an example, in the game represented
in Figure 3.1, there are no (weakly) dominated strategies but y1, z1, y2

and z2 are all unacceptable.
Unfortunately an equilibrium that is neither perfect nor a linear

combination of perfect equilibria could be an acceptable correlated
equilibrium according to the definition proposed by Myerson [1986].
This seems a consequence of the fact that in a three player game an
equilibrium might be not perfect even if no weakly dominated strat-
egy is played.

Figure 3.2: Game A3.2 - Three player game in strategic form

Consider the game represented in Figure 3.2. Both strategy profiles
(x1, x2, y3) and (y1, x2, x3) are Nash equilibria of the game but (y1, x2, x3)

is not perfect. However, all strategies are acceptable so both equilibria
are acceptable correlated equilibria.

Mertens and Dhillon [1996] overcame this flaw by introducing the
concept of perfect correlated equilibria (PCE) that applies the analogue
of Selten perfection (Selten [1975]) to correlated equilibria.

In more details Mertens and Dhillon [1996] defined a perfect corre-
lated equilibrium (PCE) of a normal form game Γ as a perfect equilib-
rium of an extended game obtained from Γ by introducing a correla-
tion device.

A perfect correlated equilibrium distribution (PCED) is then a prob-
ability distribution over the set of pure strategy profiles S determined
by a perfect equilibrium of some extended game.
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The authors show that in a simple two-player game the revelation

principle fails to hold for PCEDs i.e. certain PCEDs are not obtain-

able by using each player i’s strategy set as the message space. The

reason for this failure is that players need more ’coordinates’ in their

messages to encode information about how they are to tremble. Just

for the two player case the two-fold product of each strategy space

suffices as the message space, while Mertens and Dhillon [1996] were

unable to extend their results to N -player games.

A new concept of stable correlated equilibria is here introduced to

overcome the limits of both approaches and to try to extend the idea

of stable sets, as proposed by Kohlberg and Mertens [1986], to corre-

lated equilibria. It is interesting to note that every desirable property

defining strategically stable sets in non cooperative games remains a

natural requirement in a cooperative setting:

Existence: every normal form game Γ has a stable set of correlated

equilibria;

Convexity: since the set of correlated equilibria as defined by Au-

mann [1974] is convex, the property of connectedness should be en-

hanced by requiring that convexity is preserved for any stable set of

correlated equilibria;

Backwards induction: since backwards induction implies that at ev-

ery point during any play of the game each player believes that his pre-

scribed strategy will maximize his expected payoff in the remainder of

the game, there is no reason to assume that a refinement of correlated

equilibria should exclude all of these Nash equilibria;

Invariance: a solution of a game is also a solution of any game with

the same reduced normal form. As in a non cooperative setting also in

a cooperative one there is no reason to assume that the introduction,

among the pure strategies, of a randomly redundant one for a player i,

should modify his strategic choices.
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Admissibility: players’ strategies are undominated at any point in

the stable set of correlated equilibria;

Iterated dominance and forward induction: the stable set of correlated

equilibria of a game Γ contains the stable set of correlated equilibria

of any game Γ̃ obtained from Γ by deleting a strategy that is either

dominated or that is always an inferior response in every equilibrium

of the set;

Small worlds: if J is a small world in Γ, then a set of strategy profiles

is a stable set of correlated equilibria of the game ΓJ if and only if it is

the projection of a stable set of correlated equilibria of the game Γ;

Decomposition: if for a game Γ both J and I\J constitute small

worlds in Γ, then a set Q of equilibria is a stable set of correlated equi-

libria of the game Γ if and only if Q = QJ × QI\J with QJ an a stable

set of correlated equilibria of the game ΓJ and QI\J a stable set of cor-

related equilibria of the game ΓI\J ;

Player splitting: given a partition of the information set of some

player, such that no play intersects two different partition elements,

the new game, where this player is replaced by a set of agents each

managing one of the partition elements, has the same stable set of cor-

related equilibria as the initial game;

Unfortunately this last property doesn’t seem to be satisfied. This

result is similar to the one obtained when the same setting is applied

to non cooperative games.

3.2 Stable correlated equilibria

Given the initial game Γ =
{
I, {Si}i∈I , {ui}i∈I

}
define the set P ε of

perturbations η as P ε = {σ · ε | 0 < ε < 1 andσ ∈ Σ\∂Σ}. Let Sε the re-

sulting set of perturbed pure strategies profiles with Sε = {(1− ε) s+ η|
s ∈ S and η ∈ P ε} and Sεi the projection of Sε onto Si.
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The definition of stable correlated equilibria relies on the assump-
tion that each player i’s strategic behavior is independent of his strate-
gies’ perturbations. This result would come easily if all strategies of
every player were identically perturbed or, not equivalently, if each
player i’s payoff function were redefined as:

ūi(σ
ε
i , σ

ε
−i) = ui(lim

ε→0
σεi , σ

ε
−i) for ∀σε ∈ Σε = ∆Sε (3.2)

Condition (3.2) implies that each player i’s utility is independent of his
own strategies’ perturbations.

The two approaches might lead to different results since if we con-
sidered, for each pure strategy profile s ∈ S with S =

∏
i∈I
Si, a set of

perturbations P ε with |P ε| > 1, the choice of the perturbation would
be part of player i’s strategic behavior if and only if condition (3.2)
were not imposed on player i’s utility function.

Thus, given a perturbed strategy σε−i, the set of player i’s best replies
might be different in the two settings with BRi

(
σε−i
)
⊆ BRi

(
σε−i
)

where BRi

(
σε−i
)

is the set of best replies by player i when condition
(3.2) holds.

Condition (3.2) might be disputable, mainly in a non cooperative
setting. It seems less critical in the realm of correlated equilibria since,
while each player receives a clear recommendation from the mediator,
his strategic decision will depend only on the unknown recommenda-
tions σ∗−i privately sent to his opponents and their strategy perturba-
tions might be regarded as part of the uncertainty about σ∗−i.

Given Γ =
{
I, {Si}i∈I , {ui}i∈I

}
, define, for every player i, the collec-

tion Ai of all convex and compact setsGsi = BR−1
i (si) := {σ−i ∈ Σ−i|BRi

(σ−i) ∩ si 6= ∅}with Gsi ⊆ Σ−i and si ∈ Si.
Given the minimal set Θi generated by Ai with set difference and

set intersection as binary operations, construct a new strategy set as
follows: first define the collection Ψi of all orderings over the sets Ai ∈
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Θi such that, given any pair of non empty sets (Ai, Âi), if Ai ⊆ Âi

then Âi must be ranked above Ai. Since not all orderings of the sets Ai
in Θi might be considered, the set Ψi has cardinality |Ψi| ≤ Ki! with

|Θi| = Ki.

Then introduce a correspondence Fi : Ψi → Ωi where Ωi is the

collection of all orderings ωi of any set of Ki, non necessarily distinct,

pure strategys in Si. For each ordering ψi ∈ Ψi, define Fi (ψi) as the

set of all orderings in Ωi such that Ai in ψi and si in ωi are identically

ranked only if Ai ⊆ Gsi .

Let wsi = (1−ε)εk−1

1−εKi
be the weight assigned to the strategy si when

ranked in kth position in the ordering ωi with ε > 0 and arbitrarily

close to zero.

Then, for every ordering ωi in Fi (ψi), a (mixed) strategy σωi
∈ Σi

can be defined in which each strategy si is played with a probability

equal to its weight.

Consider a new game Γ̄ =
{
I,
{
S̄i
}
i∈I , {ūi}i∈I

}
with ūi defined by

condition (3.2) and S̄i = {σωi
|ωi ∈ Fi (ψi) with ψi ∈ Ψi} for every i ∈ I .

If payoff functions {ui}i∈I were considered, we’d eventually con-

fine ourselves to perturbations that exclude dominated strategies since

every ordering including a dominated strategy would be strictly dom-

inated.

The mediator will select a point in Σ̄ and will recommend privately

to each player a strategy in Σ̄i to be played. Note that any recom-

mended strategy will be regarded by every player i as payoff equiva-

lent to the limit of the corresponding perturbed strategy in ∆Si and,

by construction, any weakly dominated equilibrium strategy won’t be

part of any mediator’s recommendation.

Definition 8 (ε-stable correlated equilibrium). An ε-stable correlated equi-
librium of a game Γ is any correlated equilibrium of the perturbed game Γ̄.
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Definition 9 (Stable correlated equilibrium). A stable correlated equilib-
rium of a game Γ is the limit of an ε-fully stable correlated equilibrium for
ε→ 0.

3.2.1 Properties

Given the definition of stable correlated equilibria its properties are
now analyzed:

Proposition 23 (Convexity). The set of stable correlated equilibria is con-
vex.

Proof. The limit of the set of ε-correlated equilibria of the game Γ̄ is the
limit of the set of solutions of a system of linear inequalities.

Proposition 24. The set of stable correlated equilibria does always contain a
proper equilibrium.

Proof. In order to ensure that a stable set of equilibria of a non cooper-
ative game does contain a proper equilibrium Kohlberg and Mertens
[1986] had to create a fictitious game Γ̃ whose equilibria are all ε-proper
equilibria of the original game since a stable set has to include at least
one equilibrium of each allowed perturbed game.

Conversely, since the set of ε-correlated equilibria includes every
Nash equilibrium of the perturbed game Γ̄, it is enough to prove that
at least one equilibrium of Γ̄ is an ε-proper equilibrium of the initial
game Γ.

Recall that the fictitious game Γ̃ proposed by Kohlberg and Mertens
[1986] to prove existence of proper equilibria is derived from the ini-
tial game Γ by redefining each player i’s strategy set Si as follows:
given the collection Ψi of all orderings ψi of player i’s pure strate-
gies, let wsi = (1−ε)εk−1

1−εK be the weight assigned to the pure strategy
si when ranked in kth position in a given ordering ψi with ε strictly
positive and arbitrarily close to zero. For each ordering ψi determine a
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completely mixed strategy σψi
such that, given σψi

, each pure strat-
egy si ∈ Si is played with a probability equal to its weight in ψi.
Denote player i’s new strategy set as S̃i = {σψi

}ψi∈Ψi
. Kohlberg and

Mertens [1986] proved that any equilibrium of the resulting game Γ̃ ={
I,
{
S̃i

}
i∈I

, {ui}i∈I
}

is an ε-proper equilibrium of the original game
Γ.

With respect to the model proposed in Kohlberg and Mertens [1986],
the first restriction imposed on the set of admissible orderings by the
definition of ε-correlated equilibria, is that a (weakly) dominated strat-
egy si ∈ Si has to receive a weight wsi lower, by a factor of ε, than
the corresponding dominant strategy. Besides, for every player i, each
ordering might not include all the pure strategies in Si and a single
strategy might appear many times in the same ordering.

However, given condition (3.2), every ε-proper equilibrium strat-
egy σ̂εi could represent a mediator’s recommendation σ̂εi that an obedi-
ent player will follow provided that lim

ε→0
σ̂εi is a best reply in Si to σ̂ε−i

for every player i.

Proposition 25 (Admissibility). The set of stable correlated equilibria sat-
isfies admissibility.

Proof. By construction for each player i in every admissible ordering
ωi, a weakly dominated strategy si ∈ Si has to receive a weight lower,
by a factor of ε, than the weight assigned to the corresponding dom-
inant strategy. Therefore no weakly dominated strategy belongs to
lim
ε→0

S̄i.

Proposition 26 (Iterated dominance). The stable set of correlated equilib-
ria of a game Γ contains the stable set of correlated equilibria of any game
obtained from Γ by deleting either a dominated strategy or a strategy that is
an inferior response in all the equilibria of the set.

Proof. First note that the set ∅ is always included in Θi: if not, then
G =

⋂
si∈Si

Gsi 6= ∅ and the intersection of all sets {Gsi\G}si∈Si
would
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be empty. Therefore the deletion of a dominated strategy wouldn’t
affect the collection of sets Θi for every player i.

Consider the game Γ̃ =
{
I,
{
S̃i

}
i∈I

, {ui}i∈I
}

obtained from Γ by

deleting the dominated strategy s̃i.
Define a new correspondence F̃i : Ψi → Ω̃i where Ω̃i is the set of all

orderings ωi of any set of K̃i, non necessarily distinct, pure strategies
in S̃i with |S̃i| = K̃i.

For each ordering ψi ∈ Ψi we would have F̃i (ψi) ⊆ Fi (ψi) since
F̃i (ψi) will not include strategy orderings with s̃i equally ranked as
∅. If any mixed strategies σωi

corresponding to an ordering ωi in
Fi (ψi) \F̃i (ψi) were added to the perturbed game, no ε - correlated equi-
librium of Γ̃ would be eliminated: the mediator could always select a
point in

∏
i∈I

S̃i and, given condition (3.2), player iwill have no incentive

to deviate to any new strategy σωi
with ωi ∈ Fi (ψi) \F̃i (ψi).

Proposition 27 (Invariance). The set of stable correlated equilibria satisfies
invariance.

Proof. Given the initial game Γ create a new game Γ̂ by introducing a
randomly redundant strategy1 ŝi for some player i.

Assume that Ĝŝi 6= ∅ and recall that if a randomized strategy σi is
a best reply to a strategy σ−i then every pure strategy si in the support
of σi is a best reply to σ−i as well. Therefore Ĝŝi ∈ Θi and Θi = Θ̂i

since Ĝŝi = ∩
si∈Fŝi

Gsi where Fŝi is the support of the mixed strategy

σ ∈ ∆Si payoff equivalent to ŝi. As a consequence, the set Ψi remains
unchanged i.e. Ψ̂i = Ψi and any new pure ordering in Ω̂i is strategi-
cally equivalent to a linear combination of some pure orderings in the
corresponding set Ωi of the original game.

Now assume that Ĝŝi = ∅. If ∅ ∈ Θ then the proof just outlined
applies. Suppose, on the other hand, that ∅ /∈ Θ. This in turn implies

1A pure strategy ŝi is randomly redundant if and only if it is payoff equivalent to
a mixed strategy σi ∈ Σ.
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that ∩
si∈Si

Gsi 6= ∅. Therefore for any randomly redundant strategy ŝi it

must be Gŝi 6= ∅, hence a contradiction.
The introduction of the randomly redundant strategy modifies also

the set of possible beliefs of any other player j 6= i. However, any set
Gsj in the original game Γ is just the projection on Σ−j of the corre-
sponding set Ĝsj .

Proposition 28 (Small worlds). If J is a small world in Γ, then a set of
equilibria is a stable set of correlated equilibria of the game ΓJ if and only if it
is the projection of a stable set of correlated equilibria of the game Γ.

Proposition 29 (Decomposition). If for a game Γ both J and I\J consti-
tute small worlds in Γ, then a set Q of equilibria is a stable set of correlated
equilibria of the game Γ if and only if Q = QJ × QI\J with QJ a stable
set of correlated equilibria of the game ΓJ and QI\J a stable set of correlated
equilibria of the game ΓI\J .

Both these properties are self evident since, given any small world
J in I , when every single strategy of each player i ∈ J is replaced by
a set of its perturbations the set J of players remains a small world in
Γη.

The last property to be analyzed is player splitting. Unfortunately
this natural requirement doesn’t seem to be satisfied.

3.3 Conclusions

It is worth noting that the proposed model is far from the one pro-
posed in Kohlberg and Mertens [1986]; the connection with Mertens’
stability is confined to the attempt of satisfying the properties defining
strategic stability as defined in Mertens [1989]. It is disappointing to
observe that the missing property is the property of player splitting
since one could expect that, in a cooperative setting, this requirement
would be naturally satisfied.





General conclusions

This thesis introduces, as major contribution, a new definition of
strategically stable set of equilibria by considering a new class of per-
turbed games obtained by adding a set of irrelevant players and a
collection of dominated strategies to the initial game. Both variations
have no effect on the set of equilibria of the original game but allow to
widen the resulting stable sets of equilibria up to satisfy all the prop-
erties proposed in Kohlberg and Mertens [1986] and in Mertens [1989].
Besides a new fictitious game is proposed to define a new single val-
ued Nash equilibrium refinement, namely refined equilibria, and to ex-
tend strategic stability to correlated equilibria. In both cases the de-
sired goals are not reached even if there are significant positive results:
a refined equilibrium satisfies the invariance property improving on
the concept of proper equilibrium. This result stems from a setting
that is closer to the forward induction than the backwards induction
approach: a single valued solution concept that always conforms with
backwards induction cannot verify the property of invariance. Simi-
larly the concept of stable correlated equilibria improve on both per-
fect and acceptable correlated equilibria since it can be applied to n-
player games and it excludes equilibria that are not perfect.
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