User menu

Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.

Bibliographic reference Vorobieva, Anastassia A ; Khan, Mohammad Shahneawz ; Soumillion, Patrice. Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.. In: Journal of Biological Chemistry, Vol. 289, no.42, p. 29086-29096 (2014)
Permanent URL http://hdl.handle.net/2078.1/156157
  1. Ohno Susumu, Evolution by Gene Duplication, ISBN:9783642866616, 10.1007/978-3-642-86659-3
  2. Soo V. W. C., Hanson-Manful P., Patrick W. M., Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli, 10.1073/pnas.1012108108
  3. Yip Sylvia Hsu-Chen, Matsumura Ichiro, Substrate Ambiguous Enzymes within the Escherichia coli Proteome Offer Different Evolutionary Solutions to the Same Problem, 10.1093/molbev/mst105
  4. KHERSONSKY O, ROODVELDT C, TAWFIK D, Enzyme promiscuity: evolutionary and mechanistic aspects, 10.1016/j.cbpa.2006.08.011
  5. Tawfik Olga Khersonsky and Dan S., Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective, 10.1146/annurev-biochem-030409-143718
  6. Kaltenbach, J. Exp. Zool. B Mol. Dev. Evol, 9999, 1 (2014)
  7. McLoughlin S. Y., Copley S. D., A compromise required by gene sharing enables survival: Implications for evolution of new enzyme activities, 10.1073/pnas.0804804105
  8. Miller Brian G., Raines Ronald T., Identifying Latent Enzyme Activities:  Substrate Ambiguity within Modern Bacterial Sugar Kinases†, 10.1021/bi049424m
  9. Miller Brian G., Raines Ronald T., Reconstitution of a Defunct Glycolytic Pathway via Recruitment of Ambiguous Sugar Kinases†, 10.1021/bi0506268
  10. Yang K., Metcalf W. W., A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase, 10.1073/pnas.0400664101
  11. Nam H., Lewis N. E., Lerman J. A., Lee D.-H., Chang R. L., Kim D., Palsson B. O., Network Context and Selection in the Evolution to Enzyme Specificity, 10.1126/science.1216861
  12. D'Ari Richard, Casadesús Josep, Underground metabolism, 10.1002/(sici)1521-1878(199802)20:2<181::aid-bies10>3.0.co;2-0
  13. Voordeckers Karin, Brown Chris A., Vanneste Kevin, van der Zande Elisa, Voet Arnout, Maere Steven, Verstrepen Kevin J., Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication, 10.1371/journal.pbio.1001446
  14. Fedøy Anita-Elin, Yang Nannan, Martinez Aurora, Leiros Hanna-Kirsti S., Steen Ida Helene, Structural and Functional Properties of Isocitrate Dehydrogenase from the Psychrophilic Bacterium Desulfotalea psychrophila Reveal a Cold-active Enzyme with an Unusual High Thermal Stability, 10.1016/j.jmb.2007.06.040
  15. Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Stroud R. M., Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase., 10.1073/pnas.86.22.8635
  16. Stokke Runar, Karlström Mikael, Yang Nannan, Leiros Ingar, Ladenstein Rudolf, Birkeland Nils Kåre, Steen Ida Helene, Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers, 10.1007/s00792-006-0060-z
  17. Gráczer Éva, Merli Angelo, Singh Rajesh Kumar, Karuppasamy Manikandan, Závodszky Péter, Weiss Manfred S., Vas Mária, Atomic level description of the domain closure in a dimeric enzyme: Thermus thermophilus 3-isopropylmalate dehydrogenase, 10.1039/c0mb00346h
  18. Wallon Gerlind, Kryger Gitay, Lovett Susan T, Oshima Tairo, Ringe Dagmar, Petsko Gregory A, Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus 1 1Edited by A. R. Fersht, 10.1006/jmbi.1996.0797
  19. Miyazaki J., Asada K., Fushinobu S., Kuzuyama T., Nishiyama M., Crystal Structure of Tetrameric Homoisocitrate Dehydrogenase from an Extreme Thermophile, Thermus thermophilus: Involvement of Hydrophobic Dimer-Dimer Interaction in Extremely High Thermotolerance, 10.1128/jb.187.19.6779-6788.2005
  20. Malik Radhika, Viola Ronald E., Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions, 10.1107/s0907444910008851
  21. Miyazaki Kentaro, Kakinuma Katsumi, Terasawa Hiroaki, Oshima Tairo, Kinetic analysis on the substrate specificity of 3-isopropylmalate dehydrogenase, 10.1016/0014-5793(93)80477-c
  22. Dean Antony M., Shiau Andrew K., Koshland Daniel E., Determinants of performance in the isocitrate dehydrogenase of Escherichia coli, 10.1002/pro.5560050218
  23. Huang R., Hippauf F., Rohrbeck D., Haustein M., Wenke K., Feike J., Sorrelle N., Piechulla B., Barkman T. J., Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates, 10.1073/pnas.1019605109
  24. Miyazaki Kentaro, Identification of a novel trifunctional homoisocitrate dehydrogenase and modulation of the broad substrate specificity through site-directed mutagenesis, 10.1016/j.bbrc.2005.08.139
  25. Miyazaki Junichi, Kobashi Nobuyuki, Nishiyama Makoto, Yamane Hisakazu, Characterization of Homoisocitrate Dehydrogenase Involved in Lysine Biosynthesis of an Extremely Thermophilic Bacterium,Thermus thermophilusHB27, and Evolutionary Implication of β-Decarboxylating Dehydrogenase, 10.1074/jbc.m205133200
  26. Miyazaki Kentaro, Bifunctional isocitrate–homoisocitrate dehydrogenase: A missing link in the evolution of β-decarboxylating dehydrogenase, 10.1016/j.bbrc.2005.03.169
  27. Tipton P.A., Beecher B.S., Tartrate Dehydrogenase, a New Member of the Family of Metal-Dependent Decarboxylating R-Hydroxyacid Dehydrogenases, 10.1006/abbi.1994.1352
  28. Tipton Peter A., Peisach Jack, Characterization of the multiple catalytic activities of tartrate dehydrogenase, 10.1021/bi00459a013
  29. STERN JOSEPH R., HEGRE C. S., Inducible D-Malic Enzyme in Escherichia coli, 10.1038/2121611a0
  30. Reed J. L., Patel T. R., Chen K. H., Joyce A. R., Applebee M. K., Herring C. D., Bui O. T., Knight E. M., Fong S. S., Palsson B. O., Systems approach to refining genome annotation, 10.1073/pnas.0603364103
  31. Wright B. E., Minnick M. F., Reversion rates in a leuB auxotroph of Escherichia coli K-12 correlate with ppGpp levels during exponential growth, 10.1099/00221287-143-3-847
  32. Jin Jianling, Gao Peiji, Mao Yumin, 10.1186/1471-2156-3-6
  33. Thomason Lynn C., Costantino Nina, Court Donald L., E. coliGenome Manipulation by P1 Transduction, 10.1002/0471142727.mb0117s79
  34. Jensen R A, Enzyme Recruitment in Evolution of New Function, 10.1146/annurev.mi.30.100176.002205
  35. Baba Tomoya, Ara Takeshi, Hasegawa Miki, Takai Yuki, Okumura Yoshiko, Baba Miki, Datsenko Kirill A, Tomita Masaru, Wanner Barry L, Mori Hirotada, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, 10.1038/msb4100050
  36. Neidhardt, J. Bacteriol, 119, 736 (1974)
  37. Dean, J. Biol. Chem, 264, 20482 (1989)
  38. Gasteiger E. Hoogland C. Gattiker A. Duvaud S. Wilkins M. R. Appel R. D. Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server. in The Proteomics Protocols Handbook ( Walker J. M. , ed), pp. 571–607, Humana Press, Totowa, NJ
  39. Niesen Frank H, Berglund Helena, Vedadi Masoud, The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability, 10.1038/nprot.2007.321
  40. Chen Ridong, Jeong Soon-Seog, Functional prediction: Identification of protein orthologs and paralogs, 10.1110/ps.9.12.2344
  41. Darriba Diego, Taboada Guillermo L., Doallo Ramón, Posada David, ProtTest 3: fast selection of best-fit models of protein evolution, 10.1093/bioinformatics/btr088
  42. Guindon Stéphane, Dufayard Jean-François, Lefort Vincent, Anisimova Maria, Hordijk Wim, Gascuel Olivier, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, 10.1093/sysbio/syq010
  43. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V., Lescot M., Claverie J.-M., Gascuel O., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, 10.1093/nar/gkn180
  44. Lukas H., Reimann J., Kim O. B., Grimpo J., Unden G., Regulation of Aerobic and Anaerobic D-Malate Metabolism of Escherichia coli by the LysR-Type Regulator DmlR (YeaT), 10.1128/jb.01665-09
  45. Copley Shelley D., Toward a Systems Biology Perspective on Enzyme Evolution, 10.1074/jbc.r111.254714
  46. Lin Ying, West Ann H., Cook Paul F., Potassium Is an Activator of Homoisocitrate Dehydrogenase fromSaccharomyces cerevisiae†, 10.1021/bi801370h
  47. Giffhorn, J. Bacteriol, 155, 281 (1983)
  48. Bar-Even Arren, Noor Elad, Savir Yonatan, Liebermeister Wolfram, Davidi Dan, Tawfik Dan S., Milo Ron, The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters, 10.1021/bi2002289
  49. Matulis Daumantas, Kranz James K., Salemme F. Raymond, Todd Matthew J., Thermodynamic Stability of Carbonic Anhydrase:  Measurements of Binding Affinity and Stoichiometry Using ThermoFluor, 10.1021/bi048135v
  50. Senisterra Guillermo A., Markin Eugene, Yamazaki Ken, Hui Raymond, Vedadi Masoud, Awrey Donald E., Screening for Ligands Using a Generic and High-Throughput Light-Scattering-Based Assay, 10.1177/1087057106294699
  51. KNICHEL Wolfgang, RADLER Ferdinand, d-Malic Enzyme of Pseudomonas fluorescens, 10.1111/j.1432-1033.1982.tb06567.x
  52. Crouzet P, Otten L, Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis., 10.1128/jb.177.22.6518-6526.1995
  53. Yaoi T., Miyazaki K., Oshima T., Substrate Recognition of Isocitrate Dehydrogenase and 3-Isopropylmalate Dehydrogenase from Thermus thermophilus HB8, 10.1093/oxfordjournals.jbchem.a021573
  54. Zhu G., The Selective Cause of an Ancient Adaptation, 10.1126/science.1106974
  55. Tipton Peter A., Intermediate partitioning in the tartrate dehydrogenase-catalyzed oxidative decarboxylation of D-malate, 10.1021/bi00062a013
  56. Serfozo Peter, Tipton Peter A., Substrate determinants of the course of tartrate dehydrogenase-catalyzed reactions, 10.1021/bi00022a027
  57. GLASNER M, GERLT J, BABBITT P, Evolution of enzyme superfamilies, 10.1016/j.cbpa.2006.08.012
  58. Tawfik Dan S, Messy biology and the origins of evolutionary innovations, 10.1038/nchembio.441
  59. Wessler Susan R., Calvo Joseph M., Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism, 10.1016/0022-2836(81)90348-x
  60. Dean Antony M., Dvorak Laura, The role of glutamate 87 in the kinetic mechanism ofThermus thermophilusisopropylmalate dehydrogenase, 10.1002/pro.5560041022
  61. Gonçalves Susana, Miller Stephen P., Carrondo Maria A., Dean Anthony M., Matias Pedro M., Induced Fit and the Catalytic Mechanism of Isocitrate Dehydrogenase, 10.1021/bi300483w
  62. Harding Marjorie M., Metal–ligand geometry relevant to proteins and in proteins: sodium and potassium, 10.1107/s0907444902003712
  63. Stokke Runar, Madern Dominique, Fedøy Anita-Elin, Karlsen Solveig, Birkeland Nils-Kåre, Steen Ida Helene, Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme, 10.1007/s00203-006-0200-y
  64. Afriat Livnat, Roodveldt Cintia, Manco Giuseppe, Tawfik Dan S., The Latent Promiscuity of Newly Identified Microbial Lactonases Is Linked to a Recently Diverged Phosphotriesterase†, 10.1021/bi061268r
  65. van Loo B., Jonas S., Babtie A. C., Benjdia A., Berteau O., Hyvonen M., Hollfelder F., An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily, 10.1073/pnas.0903951107
  66. Patrick W. M., Quandt E. M., Swartzlander D. B., Matsumura I., Multicopy Suppression Underpins Metabolic Evolvability, 10.1093/molbev/msm204