User menu

Semi-classical states for the Choquard equation

Bibliographic reference Moroz, Vitaly ; Van Schaftingen, Jean. Semi-classical states for the Choquard equation. In: Calculus of Variations and Partial Differential Equations, Vol. 52, no.1-2, p. 199-235 (2014)
Permanent URL
  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)
  2. Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. In: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), Liguori, Naples, pp. 19–52 (1983)
  3. Ambrosetti A., Badiale M., Cingolani S., Semiclassical States of Nonlinear Schrödinger Equations, 10.1007/s002050050067
  4. Ambrosetti Antonio, Felli Veronica, Malchiodi Andrea, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, 10.4171/jems/24
  5. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on R $$^{n}$$ n . Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)
  6. Ambrosetti Antonio, Malchiodi Andrea, Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives, 10.1090/conm/446/08624
  7. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)
  8. Ambrosetti Antonio, Rabinowitz Paul H, Dual variational methods in critical point theory and applications, 10.1016/0022-1236(73)90051-7
  9. Appell Jurgen, Zabrejko Petr P., Nonlinear superposition operators, ISBN:9780511897450, 10.1017/cbo9780511897450
  10. Bonheure Denis, Di Cosmo Jonathan, Van Schaftingen Jean, Nonlinear Schrödinger equation with unbounded or vanishing potentials: Solutions concentrating on lower dimensional spheres, 10.1016/j.jde.2011.10.004
  11. Bonheure Denis, Van Schaftingen Jean, Nonlinear Schrödinger equations with potentials vanishing at infinity, 10.1016/j.crma.2006.04.011
  12. Bonheure Denis, Van Schaftingen Jean, Bound state solutions for a class of nonlinear Schrödinger equations, 10.4171/rmi/537
  13. Bonheure, D., Van Schaftingen, J.: Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity. Ann. Mat. Pura Appl. (4) 189(2), 273–301 (2010)
  14. BYEON JAEYOUNG, WANG ZHI-QIANG, Standing Waves with a Critical Frequency for Nonlinear Schrödinger Equations, 10.1007/s00205-002-0225-6
  15. Byeon Jaeyoung, Wang Zhi-Qiang, Standing waves with a critical frequency for nonlinear Schr�dinger equations, II, 10.1007/s00526-002-0191-8
  16. Cingolani Silvia, Clapp Mónica, Secchi Simone, Multiple solutions to a magnetic nonlinear Choquard equation, 10.1007/s00033-011-0166-8
  17. Cingolani Silvia, Jeanjean Louis, Secchi Simone, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, 10.1051/cocv:2008055
  18. Cingolani, S., Secchi, S.: Multiple S $$^{1}$$ 1 -orbits for the Schrödinger-Newton system. Differ. Integral Equ. 26(9/10), 867–884 (2013)
  19. Cingolani Silvia, Secchi Simone, Squassina Marco, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, 10.1017/s0308210509000584
  20. Clapp Mónica, Salazar Dora, Positive and sign changing solutions to a nonlinear Choquard equation, 10.1016/j.jmaa.2013.04.081
  21. del Pino Manuel, Felmer Patricio L., Semi-classical States for Nonlinear Schrödinger Equations, 10.1006/jfan.1996.3085
  22. Del Pino Manuel, Felmer Patricio L., Multi-peak bound states for nonlinear Schrödinger equations, 10.1016/s0294-1449(97)89296-7
  23. Di Cosmo Jonathan, Van Schaftingen Jean, Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima, 10.1007/s00526-012-0518-z
  24. Floer Andreas, Weinstein Alan, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, 10.1016/0022-1236(86)90096-0
  25. Genev Hristo, Venkov George, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, 10.3934/dcdss.2012.5.903
  26. Herbst Ira W., Spectral theory of the operator (p 2+m 2)1/2−Ze 2/r, 10.1007/bf01609852
  28. Jones KRW, Newtonian Quantum Gravity, 10.1071/ph951055
  29. Kwon Ohsang, Existence of standing waves of nonlinear Schrödinger equations with potentials vanishing at infinity, 10.1016/j.jmaa.2011.09.050
  30. Lieb Elliott H., Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation, 10.1002/sapm197757293
  31. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
  32. Lions P.L., The Choquard equation and related questions, 10.1016/0362-546x(80)90016-4
  33. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)
  34. Ma Li, Zhao Lin, Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation, 10.1007/s00205-008-0208-3
  35. Menzala Gustavo Perla, On regular solutions of a nonlinear equation of Choquard's type, 10.1017/s0308210500012191
  36. Menzala, G.P.: On the nonexistence of solutions for an elliptic problem in unbounded domains. Funkc. Ekvacio 26(3), 231–235 (1983)
  37. Moroz Irene M, Penrose Roger, Tod Paul, Spherically-symmetric solutions of the Schrödinger-Newton equations, 10.1088/0264-9381/15/9/019
  38. Moroz Vitaly, Van Schaftingen Jean, Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials, 10.1016/j.crma.2009.05.009
  39. Moroz Vitaly, Van Schaftingen Jean, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, 10.1007/s00526-009-0249-y
  40. Moroz, V., Van Schaftingen, J.: Nonlocal Hardy type inequalities with optimal constants and remainder terms. Ann. Univ. Buchar. Math. Ser. 3(LXI)(2), 187–200 (2012)
  41. Moroz Vitaly, Van Schaftingen Jean, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, 10.1016/j.jde.2012.12.019
  42. Moroz Vitaly, Van Schaftingen Jean, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, 10.1016/j.jfa.2013.04.007
  43. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. arXiv:1212.2027
  44. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)
  45. Penrose Roger, On Gravity's role in Quantum State Reduction, 10.1007/bf02105068
  46. Pinchover Yehuda, Tintarev Kyril, A ground state alternative for singular Schrödinger operators, 10.1016/j.jfa.2005.05.015
  47. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)
  48. Riesz Marcel, L'intégrale de Riemann-Liouville et le problème de Cauchy, 10.1007/bf02395016
  49. Schwartz, J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)
  50. Secchi Simone, A note on Schrödinger–Newton systems with decaying electric potential, 10.1016/
  51. Stein, E.M., Weiss, G.: Fractional integrals on n-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)
  52. Struwe, M.: Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 34. Springer, Berlin (2008)
  53. Tod Paul, Moroz Irene M, An analytical approach to the Schrödinger-Newton equations, 10.1088/0951-7715/12/2/002
  54. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50(1), 012905, 22 (2009)
  55. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)
  56. Willem Michel, Functional Analysis, ISBN:9781461470038, 10.1007/978-1-4614-7004-5
  57. Yin Huicheng, Zhang Pingzheng, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity, 10.1016/j.jde.2009.03.002