User menu

Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur

Bibliographic reference Botello Mendez, Andrés Rafael ; López-Urías, Florentino ; Terrones, Mauricio ; Terrones, Humberto. Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur. In: Nano Research, Vol. 1, no.5, p. 420-426 (2008)
Permanent URL http://hdl.handle.net/2078/154541
  1. Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc blende magnetic semiconductors. Science 2000, 287, 1019–1022.
  2. Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C. N. R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006 74, 161306.
  3. Ronning, C.; Gao, P. X.; Ding, Y.; Wang, Z. L.; Schwen, D. Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 2004, 84, 783–785.
  4. Rao, C. N. R.; Deepak, F. L. Absence of ferromagnetism in Mn-and Co-doped ZnO. J. Mater. Chem. 2005, 15, 573–578.
  5. Garcia, M. A.; Merino, J. M.; Fernández Pinel, E.; Quesada, A.; de la Venta, J.; Ruíz González, M. L.; Castro, G. R.; Crespo, P.; Llopis, J.; González Calbet, J. M.; Hernando, A. Magnetic properties of ZnO nanoparticles. Nano Lett. 2007, 7, 1489–1494.
  6. Banerjee, S.; Mandal, M.; Gayathri, N.; Sardar, M. Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl. Phys. Lett. 2007, 91, 182501.
  7. Botello-Méndez, A. R.; López Urías, F.; Terrones, M.; Terrones, H. Unpublished results.
  8. Tusche, C.; Meyerheim, H. L.; Kirschner, J. Observation of depolarized ZnO (0001) monolayers: Formation of unreconstructed planar sheets. Phys. Rev. Lett. 2007, 99, 026102.
  9. Botello-Méndez, A. R.; López Urías, F.; Terrones, M.; Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett. 2008, 8, 1562–1565.
  10. Botello-Méndez, A. R.; Martínez-Martínez, M. T.; López Urías, F.; Terrones, M.; Terrones, H. Metallic edges in zinc oxide nanoribbons. Chem. Phys. Lett. 2007, 448, 258–263.
  11. Claeyssens, F.; Freeman, C. L.; Allan, N. L.; Sun, Y.; Ashfold, M. N. R.; Harding, J. H. Growth of ZnO thin films—Experiment and theory. J. Mater. Chem. 2005, 15, 139–148.
  12. Coey, J. M. D. d0 ferromagnetism. Solid State Sci. 2005, 7, 660–667.
  13. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2002, 14, 2745–2779.
  14. Meyer, B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403.
  15. Quantum-ESPRESSO is a community project for high quality quantum-simulation software, based on density functional theory, and coordinated by Paolo Giannozzi. See http://www.quantum-espresso.org and http://www.pwscf.org (Accessed 4 March, 2008).
  16. Janotti, A.; Segev, D.; Van de Walle, C. G. Effects of cation d status on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors. Phys. Rev. B 2006, 74, 045202.