User menu

Are meloxicam dimers really the structure-forming units in the 'meloxicam-carboxylic acid' co-crystals family? Relation between crystal structures and dissolution behaviour

Bibliographic reference Tumanov, Nikolay ; Myz, Svetlana A. ; Shakhtshneider, Tatyana P. ; Boldyreva, Elena V.. Are meloxicam dimers really the structure-forming units in the 'meloxicam-carboxylic acid' co-crystals family? Relation between crystal structures and dissolution behaviour. In: CrystEngComm, Vol. 14, no.1, p. 305-313 (2012)
Permanent URL http://hdl.handle.net/2078/154369
  1. Morissette S, High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids, 10.1016/j.addr.2003.10.020
  2. Blagden N., de Matas M., Gavan P.T., York P., Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, 10.1016/j.addr.2007.05.011
  3. Schultheiss Nate, Newman Ann, Pharmaceutical Cocrystals and Their Physicochemical Properties, 10.1021/cg900129f
  4. Jones William, Motherwell W.D. Samuel, Trask Andrew V., Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement, 10.1557/mrs2006.206
  5. Vishweshwar Peddy, McMahon Jennifer A., Bis Joanna A., Zaworotko Michael J., Pharmaceutical Co-Crystals, 10.1002/jps.20578
  6. Sekhon, Ars Pharmaceutica, 50, 99 (2009)
  7. Friščić Tomislav, Jones William, Benefits of cocrystallisation in pharmaceutical materials science: an update : Cocrystallisation, 10.1111/j.2042-7158.2010.01133.x
  8. Trask Andrew V., An Overview of Pharmaceutical Cocrystals as Intellectual Property†, 10.1021/mp070001z
  9. Karki Shyam, Friščić Tomislav, Fábián László, Laity Peter R., Day Graeme M., Jones William, Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol, 10.1002/adma.200900533
  10. Trask Andrew V., Motherwell W. D. Samuel, Jones William, Pharmaceutical Cocrystallization:  Engineering a Remedy for Caffeine Hydration, 10.1021/cg0496540
  11. Basavoju Srinivas, Boström Dan, Velaga Sitaram P., Indomethacin–Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization, 10.1007/s11095-007-9394-1
  12. Cherukuvada Suryanarayan, Babu N. Jagadeesh, Nangia Ashwini, Nitrofurantoin–p‐aminobenzoic acid cocrystal: Hydration stability and dissolution rate studies, 10.1002/jps.22546
  13. Good, Cryst. Growth Des., 10, 1028 (2010)
  14. Good David J., Rodríguez-Hornedo Naír, Solubility Advantage of Pharmaceutical Cocrystals, 10.1021/cg801039j
  15. McNamara Daniel P., Childs Scott L., Giordano Jennifer, Iarriccio Anthony, Cassidy James, Shet Manjunath S., Mannion Richard, O'Donnell Ed, Park Aeri, Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API, 10.1007/s11095-006-9032-3
  16. Li Z. Jane, Abramov Yuriy, Bordner Jon, Leonard Jason, Medek Ales, Trask Andrew V., Solid-State Acid−Base Interactions in Complexes of Heterocyclic Bases with Dicarboxylic Acids:  Crystallography, Hydrogen Bond Analysis, and15N NMR Spectroscopy, 10.1021/ja0541332
  17. Shiraki Koji, Takata Noriyuki, Takano Ryusuke, Hayashi Yoshiki, Terada Katsuhide, Dissolution Improvement and the Mechanism of the Improvement from Cocrystallization of Poorly Water-soluble Compounds, 10.1007/s11095-008-9676-2
  18. Babu, Cryst. Growth Des. (2011)
  19. Lipinski, Amer. Pharm. Rev., 5, 82 (2002)
  20. Del Tacca M., Colucci R., Fornai M., Blandizzi C., Efficacy and Tolerability of Meloxicam, a COX-2 Preferential Nonsteroidal Anti-Inflammatory Drug : A Review, 10.2165/00044011-200222120-00001
  21. Obaidat Aiman, Obaidat Rana, Development and evaluation of fast-dissolving tablets of meloxicam-β-cyclodextrin complex prepared by direct compression, 10.2478/v10007-011-0005-7
  22. Obaidat Aiman A., Khanfar Rasha A., Khawam Mohammad N., The effect of β-cyclodextrin on the solubility and dissolution rate of meloxicam and investigation of the driving force for complexation using molecular modeling, 10.1007/s10847-008-9517-2
  23. El-Mahrouk, Asian J. Pharm. Sci., 4, 8 (2009)
  24. Brewster Marcus E., Loftsson Thorsteinn, Cyclodextrins as pharmaceutical solubilizers, 10.1016/j.addr.2007.05.012
  25. Kulkarni, Intern. J. Pharm. Pharm. Sci., 3, 91 (2011)
  26. Emmadi, Latin Amer. J. Pharm., 29, 1303 (2010)
  27. Niharika, Res. J. Pharm., Biol. Chem. Sci., 1, 655 (2010)
  28. Aejaz, Intern. J. Pharm. Pharm. Sci., 2, 182 (2010)
  29. Ghareeb Mowafaq M., Abdulrasool Alaa A., Hussein Ahmed A., Noordin Mohammed I., Kneading Technique for Preparation of Binary Solid Dispersion of Meloxicam with Poloxamer 188, 10.1208/s12249-009-9316-0
  30. El-Maradny Hoda, Mortada Sana, Kamel Ola, Hikal Ahmed, Characterization of ternary complexes of meloxicam-HPβCD and PVP or L-arginine prepared by the spray-drying technique, 10.2478/v10007-008-0029-9
  31. Bashiri-Shahroodi Amir, Nassab Parya Reisi, Szabó-Révész Piroska, Rajkó Róbert, Preparation of a Solid Dispersion by a Dropping Methodto Improve the Rate of Dissolution of Meloxicam, 10.1080/03639040801925735
  32. Hassan, S.T.P. Pharma Pratiques, 18, 275 (2008)
  33. Inamdar Nazma, Bhise Kiran, Memon Shakeel, Solubility enhancement and development of dispersible tablet of meloxicam, 10.4103/0973-8398.42502
  34. Pathak Deepa, Dahiya Sunita, Pathak Kamla, Solid dispersion of meloxicam: Factorially designed dosage form for geriatric population, 10.2478/v10007-007-0048-y
  35. El-Badry M., Fathy M., Enhancement of the Dissolution and Permeation Rates of Meloxicam by Formation of Its Freeze-dried Solid Dispersions in Polyvinylpyrrolidone K-30, 10.1080/03639040500465983
  36. Hassan, Iranian J. Pharm. Res, 4, 231 (2006)
  37. VIJAYA KUMAR Sengodan Gurusamy, MISHRA Dina Nath, Preparation, Characterization and In vitro Dissolution Studies of Solid Dispersion of Meloxicam with PEG 60001), 10.1248/yakushi.126.657
  38. Nassab Parya Reisi, Rajkó Róbert, Szabó-Révész Piroska, Physicochemical characterization of meloxicam–mannitol binary systems, 10.1016/j.jpba.2006.02.055
  39. Naidu N.Buchi, Chowdary K.P.R., Murthy K.V.R., Satyanarayana V., Hayman A.R., Becket G., Physicochemical characterization and dissolution properties of meloxicam–cyclodextrin binary systems, 10.1016/j.jpba.2004.01.003
  40. Chowdary, Ind. J. Pharm. Sci., 63, 150 (2001)
  41. Mukhija, Intern. J. Pharm. Recent Res., 2, 69 (2010)
  42. SHARMA S, PAWAR A, Low density multiparticulate system for pulsatile release of meloxicam, 10.1016/j.ijpharm.2006.02.001
  43. Kinoshita Masahiro, Baba Kazuhiko, Nagayasu Atushi, Yamabe Kanoo, Shimooka Takashi, Takeichi Yoh'ichiro, Azuma Mami, Houchi Hitoshi, Minakuchi Kazuo, Improvement of solubility and oral bioavailability of a poorly water‐soluble drug, TAS‐301, by its melt‐adsorption on a porous calcium silicate, 10.1002/jps.10026
  44. T. P. Shakhtshneider , S. A.Myz, N. I.Nizovskii, E. V.Boldyreva, T. C.Alex, RakeshKumar, Abstracts Intern. Confer. Chem. Organic Solid State (ICCOSS XX). Bangalore, India, June 26–30, 2011
  45. V. P. Isupov , T. P.Shakhtshneider, S. A.Myz, V. V.Boldyrev, Russian Patent RF № 2421243, priority from 09.11.2009, Published on 20.06.2011, Bulletin № 17
  46. A. I. Nizovsky , A. V.Kalinkin, T. P.Shakhtshneider, M. A.Dyakonova, S. A.Myz, E. V.Boldyreva, RakeshKumar, J. Struct. Chem, in press
  47. Han Hyo-Kyung, Choi Hoo-Kyun, Improved absorption of meloxicam via salt formation with ethanolamines, 10.1016/j.ejpb.2006.07.003
  48. Ambrus R., Kocbek P., Kristl J., Šibanc R., Rajkó R., Szabó-Révész P., Investigation of preparation parameters to improve the dissolution of poorly water-soluble meloxicam, 10.1016/j.ijpharm.2009.07.009
  49. Chiou Andy Hong-Jey, Yeh Ming-Kung, Chen Chang-Yi, Wang Da-Peng, Micronization of meloxicam using a supercritical fluids process, 10.1016/j.supflu.2006.12.024
  50. Myz Svetlana A., Shakhtshneider Tatyana P., Fucke Katharina, Fedotov Anatoly P., Boldyreva Elena V., Boldyrev Vladimir V., Kuleshova Nadezhda I., Synthesis of co-crystals of meloxicam with carboxylic acids by grinding, 10.1016/j.mencom.2009.09.014
  51. S. A. Myz , T. P.Shakhtshneider, N. A.Tumanov, and E. V.Boldyreva, Proceed. X Intern. Conference “Solid state chemistry: nanomaterials, nanotechnologies”, Stavropol, October 17–22, 2010, pp. 351
  52. S. A. Myz , T. P.Shakhtshneider, N. A.Tumanov, E. V.Boldyreva, Proceed. Research Conference “Nanotechnologies of functional materials”, St. Petersbourg, September, 22–24, 2010, pp. 116–117
  53. S. A. Myz , N. A.Tumanov, T. P.Shakhtshneider, E. V.Boldyreva, Abstracts Intern. Confer. Chem. Organic Solid State (ICCOSS XX), Bangalore, India, June 26–30, 2011
  54. Luger Peter, Daneck Klaus, Engel Wolfhard, Trummlitz Günter, Wagner Klaus, Structure and physicochemical properties of meloxicam, a new NSAID, 10.1016/0928-0987(95)00046-1
  55. Cheney Miranda L., Weyna David R., Shan Ning, Hanna Mazen, Wojtas Lukasz, Zaworotko Michael J., Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study, 10.1021/cg100514g
  56. S. A. Myz , N. A.Tumanov, T. P.Shakhtshneider, E. V.Boldyreva, Russ. Chem. Bull., 2011, in press
  57. Sheldrick George M., A short history ofSHELX, 10.1107/s0108767307043930
  58. Spek A. L., Single-crystal structure validation with the programPLATON, 10.1107/s0021889802022112
  59. Macrae Clare F., Edgington Paul R., McCabe Patrick, Pidcock Elna, Shields Greg P., Taylor Robin, Towler Matthew, van de Streek Jacco, Mercury: visualization and analysis of crystal structures, 10.1107/s002188980600731x
  60. Macrae Clare F., Bruno Ian J., Chisholm James A., Edgington Paul R., McCabe Patrick, Pidcock Elna, Rodriguez-Monge Lucia, Taylor Robin, van de Streek Jacco, Wood Peter A., Mercury CSD 2.0– new features for the visualization and investigation of crystal structures, 10.1107/s0021889807067908
  61. McKinnon Joshua J., Spackman Mark A., Mitchell Anthony S., Novel tools for visualizing and exploring intermolecular interactions in molecular crystals, 10.1107/s0108768104020300
  62. McKinnon Joshua J., Jayatilaka Dylan, Spackman Mark A., Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces, 10.1039/b704980c
  63. S. K. Wolff , D. J.Grimwood, J. J.McKinnon, D.Jayatilaka and M. A.Spackman, CrystalExplorer, 2.1., University of Western Australia, Perth, 2007, http://hirshfeldsurfacenet/CrystalExplorer
  64. L. Coppi , M. B.Sanmarti and M. C.Clavo, US Patent 6,967,248 B2 USA, 2005
  65. Mezei Tibor, Mesterházy Norbert, Bakó Tibor, Porcs-Makkay Márta, Simig Gyula, Volk Balázs, Manufacture of High-Purity Meloxicam via Its Novel Potassium Salt Monohydrate, 10.1021/op900031h
  66. Defazio Sandra, Cini Renzo, Synthesis, X-ray structure and molecular modelling analysis of cobalt(ii), nickel(ii), zinc(ii) and cadmium(ii) complexes of the widely used anti-inflammatory drug meloxicam, 10.1039/b107594m
  67. Defazio Sandra, Cini Renzo, Synthesis, X-ray structural characterization and solution studies of metal complexes containing the anti-inflammatory drugs meloxicam and tenoxicam, 10.1016/s0277-5387(03)00112-8
  68. Cini Renzo, Tamasi Gabriella, Defazio Sandra, Hursthouse Michael B., Unusual coordinating behavior by three non-steroidal anti-inflammatory drugs from the oxicam family towards copper(II). Synthesis, X-ray structure for copper(II)–isoxicam, –meloxicam and –cinnoxicam-derivative complexes, and cytotoxic activity for a copper(II)–piroxicam complex, 10.1016/j.jinorgbio.2007.04.015
  69. Tamasi Gabriella, Casolaro Mario, Magnani Agnese, Sega Alessandro, Chiasserini Luisa, Messori Luigi, Gabbiani Chiara, Valiahdi Seied Mojtaba, Jakupec Michael A., Keppler Bernhard K., Hursthouse Michael B., Cini Renzo, New platinum–oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro, 10.1016/j.jinorgbio.2010.03.010
  70. N. Tumanov , M.Dyakonova, N. A.Pankrushina and T. P.Shakhtshneider, 2011, CCDC 832082, deposited in CSD as a private communication
  71. Allen, Acta Crystallogr., B58, 380 (2002)
  72. Childs Scott L., Wood Peter A., Rodríguez-Hornedo Naír, Reddy L. Sreenivas, Hardcastle Kenneth I., Analysis of 50 Crystal Structures Containing Carbamazepine Using theMaterialsModule ofMercury CSD, 10.1021/cg801056c
  73. G. A. Jeffrey , An Introduction to Hydrogen Bonding, 1997, New York, Oxford University Press
  74. Remenar Julius F., Morissette Sherry L., Peterson Matthew L., Moulton Brian, MacPhee J. Michael, Guzmán Héctor R., Almarsson Örn, Crystal Engineering of Novel Cocrystals of a Triazole Drug with 1,4-Dicarboxylic Acids, 10.1021/ja035776p
  75. Ostwald, Z. Phys. Chem., 22, 289 (1879)
  76. Threlfall Terry, Structural and Thermodynamic Explanations of Ostwald's Rule, 10.1021/op030026l
  77. Alhalaweh Amjad, Velaga Sitaram P., Formation of Cocrystals from Stoichiometric Solutions of Incongruently Saturating Systems by Spray Drying, 10.1021/cg100451q
  78. Tumanov, Acta Crystallogr., C66, o279 (2010)
  79. Alhalaweh Amjad, George Sumod, Boström Dan, Velaga Sitaram P., 1:1 and 2:1 Urea−Succinic Acid Cocrystals: Structural Diversity, Solution Chemistry, and Thermodynamic Stability, 10.1021/cg100823p
  80. Tumanov Ivan A., Achkasov Andrey F., Boldyreva Elena V., Boldyrev Vladimir V., Following the products of mechanochemical synthesis step by step, 10.1039/c0ce00869a
  81. Friščić Tomislav, Jones William, Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding, 10.1021/cg800764n
  82. Braga Dario, Giaffreda Stefano Luca, Grepioni Fabrizia, Chierotti Michele R., Gobetto Roberto, Palladino Giuseppe, Polito Marco, Solvent effect in a “solvent free” reaction, 10.1039/b711983f
  83. Jayasankar Adivaraha, Good David J., Rodríguez-Hornedo Naír, Mechanisms by Which Moisture Generates Cocrystals, 10.1021/mp0700099
  84. Maheshwari Chinmay, Jayasankar Adivaraha, Khan Neman A., Amidon Gregory E., Rodríguez-Hornedo Naír, Factors that influence the spontaneous formation of pharmaceutical cocrystals by simply mixing solid reactants, 10.1039/b812264d
  85. Strobridge Fiona C., Judaš Nenad, Friščić Tomislav, A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal–organic materials, 10.1039/c003521a
  86. Friščić Tomislav, Childs Scott L., Rizvi Syed A. A., Jones William, The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome, 10.1039/b815174a
  87. Weyna David R., Shattock Tanise, Vishweshwar Peddy, Zaworotko Michael J., Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution, 10.1021/cg800936d
  88. Guo Kun, Sadiq Ghazala, Seaton Colin, Davey Roger, Yin Qiuxiang, Co-Crystallization in the Caffeine/Maleic Acid System: Lessons from Phase Equilibria, 10.1021/cg900885n
  89. Gagnière E., Mangin D., Puel F., Rivoire A., Monnier O., Garcia E., Klein J.P., Formation of co-crystals: Kinetic and thermodynamic aspects, 10.1016/j.jcrysgro.2009.02.040
  90. Lee K.-C., Kim K.-J., Effect of Supersaturation and Thermodynamics on Co-Crystal Formation, 10.1002/ceat.201000540
  91. Skovsgaard Signe, Bond Andrew D., Co-crystallisation of benzoic acid derivatives with N-containing bases in solution and by mechanical grinding: stoichiometric variants, polymorphism and twinning, 10.1039/b810660f
  92. Wheatley, J. Chem. Soc., 6017 (1964)
  93. Kim, Chem. Pharm. Bull., 33, 2641 (1985)
  94. Wilson Chick C., Interesting proton behaviour in molecular structures. Variable temperature neutron diffraction and ab initio study of acetylsalicylic acid: characterising librational motions and comparing protons in different hydrogen bonding potentialsElectronic supplementary information (ESI) available: bond lengths and angles from the refinements, refined atomic coordinates and ADPs. See http://www.rsc.org/suppdata/nj/b2/b203775k/, 10.1039/b203775k
  95. Harrison Andrew, Ibberson Richard, Robb Graeme, Whittaker Gavin, Wilson Chick, Youngson Douglas, In situ neutron diffraction studies of single crystals and powders during microwave irradiation, 10.1039/b203379h
  96. Kistenmacher Thomas J., Marsh Richard E., Crystal and molecular structure of an antiinflammatory agent, indomethacin, 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid, 10.1021/ja00759a047
  97. Galdecki, Farmacja Polska, 33, 585 (1977)
  98. Cox Philip J., Manson Pamela L., γ-Indomethacin at 120 K, 10.1107/s160053680301290x
  99. Chen Xiaoming, Morris Kenneth R., Griesser Ulrich J., Byrn Stephen R., Stowell Joseph G., Reactivity Differences of Indomethacin Solid Forms with Ammonia Gas, 10.1021/ja017662o
  100. Sheth Agam R., Bates Simon, Muller Francis X., Grant David J. W., Polymorphism in Piroxicam, 10.1021/cg049876y
  101. Marsh R. E., A refinement of the crystal structure of glycine, 10.1107/s0365110x58001717
  102. Umeda Yukiko, Fukami Toshiro, Furuishi Takayuki, Suzuki Toyofumi, Makimura Mizue, Tomono Kazuo, Molecular Complex Consisting of Two Typical External Medicines: Intermolecular Interaction between Indomethacin and Lidocaine, 10.1248/cpb.55.832
  103. Umeda Yukiko, Fukami Toshiro, Furuishi Takayuki, Suzuki Toyofumi, Tanjoh Katsuhisa, Tomono Kazuo, Characterization of multicomponent crystal formed between indomethacin and lidocaine, 10.1080/03639040802660489
  104. Childs Scott L., Hardcastle Kenneth I., Cocrystals of Piroxicam with Carboxylic Acids, 10.1021/cg060742p
  105. Losev, Acta Crystallogr., C67, o297 (2011)
  106. Mohammad Mohammad Amin, Alhalaweh Amjad, Velaga Sitaram P., Hansen solubility parameter as a tool to predict cocrystal formation, 10.1016/j.ijpharm.2011.01.030
  107. Reck, Die Pharmazie, 43, 477 (1988)
  108. Kojić-Prodić, Acta Crystallogr., B38, 2948 (1982)
  109. Kozjek, Acta Pharm. Jugosl, 35, 275 (1985)
  110. Vrečer F, Vrbinc M, Meden A, Characterization of piroxicam crystal modifications, 10.1016/s0378-5173(03)00057-7
  111. Aakeröy Christer B., Forbes Safiyyah, Desper John, Using Cocrystals To Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug, 10.1021/ja907674c
  112. Good David J., Rodríguez-Hornedo Naír, Cocrystal Eutectic Constants and Prediction of Solubility Behavior, 10.1021/cg901232h
  113. Bethune Sarah J., Huang Neal, Jayasankar Adivaraha, Rodríguez-Hornedo Naír, Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility, 10.1021/cg9001187
  114. Huang Neal, Rodríguez-Hornedo Naír, Effect of Micellar Solubilization on Cocrystal Solubility and Stability, 10.1021/cg1002176
  115. Jayasankar, J. Pharm. Sci., 99, 3977 (2010)
  116. Nehm Sarah J., Rodríguez-Spong Barbara, Rodríguez-Hornedo Naír, Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation, 10.1021/cg0503346