User menu

On the completeness of the set of classical W-algebras obtained from DS reductions

Bibliographic reference Fehér, L. ; O'Raifeartaigh, L. ; Ruelle, Philippe ; Tsutsui, I.. On the completeness of the set of classical W-algebras obtained from DS reductions. In: Communications in Mathematical Physics, Vol. 162, no.2, p. 399-431 (1994)
Permanent URL http://hdl.handle.net/2078.1/154031
  1. Zamolodchikov, A.B.: Infinite additional symmetries in 2-dimensional conformal quantum field theory. Theor. Math. Phys.,65, 1205–1213 (1985)
  2. Lukyanov, S.L., Fateev, V.A.: Additional symmetries and exactly soluble models in two-dimensional conformal field theory. Sov. Sci. Rev. A. Phys.15, 1–116 (1990)
  3. Bouwknegt, P., Schoutens, K.:W-symmetry in conformal field theory. Phys. Rep.223, 183–276 (1993)
  4. Blumenhagen, R., Flohr, M., Kliem, A., Nahm, W., Recknagel, A., Varnhagen, R.:W-algebras with two and three generators. Nucl. Phys.B361, 255–289 (1991);
  5. Eholzer W., Honecker A., Hübel R., How complete is the classification of W-symmetries?, 10.1016/0370-2693(93)90599-d
  6. Kausch, H.G., Watts, G.M.T.: A Study ofW-algebras using Jacobi identities. Nucl. Phys.B354, 740–768 (1991)
  7. Goodard P., Kent A., Olive D., Virasoro algebras and coset space models, 10.1016/0370-2693(85)91145-1
  8. Bais, F.A., Bouwknegt, P., Schoutens, K., Surridge, M.: Extensions of the Virasoro algebra constructed from Kac-Moody algebras by using higher order Casimir invariants. Nucl. Phys.B304, 348–370 (1988); Coset constructions for extended Virasoro algebras. Nucl. Phys.B304, 371–391 (1988)
  9. Bowcock, P., Goddard, P.: Coset constructions and extended conformal algebras. Nucl. Phys.B305, 685–709 (1988)
  10. Bouwknegt, P.: Extended conformal algebras from Kac-Moody algebras. In: Infinite dimensional Lie algebras and Lie groups. Advanced Series in Math. Phys.7, Kac, V.G. (ed.), Singapore: World Scientific 1989
  11. Watts G.M.T., W-algebras and coset models, 10.1016/0370-2693(90)90166-4
  12. Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. J. Sov. Math.30, 1975–2036 (1984)
  13. Fateev, V.A., Lukyanov, S.L.: The models of two dimensional conformal quantum field theory withZ n symmetry. Int. J. Mod. Phys.A3, 507–520 (1988)
  14. Yamagishi Kengo, The KP hierarchy and extended Virasoro algebras, 10.1016/0370-2693(88)90979-3
  15. Mathieu Pierre, Extended classical conformal algebras and the second hamiltonian structure of Lax equations, 10.1016/0370-2693(88)91211-7
  16. Bakas I., The hamiltonian structure of the spin-4 operator algebra, 10.1016/0370-2693(88)91767-4
  17. Balog, J., Fehér, L., Forgács, P., O'Raifeartaigh, L., Wipf, A.: Toda theory andW-algebra from a gauged WZNW point of view. Ann. Phys. (N. Y.)203, 76–136 (1990)
  18. Bais, F.A., Tjin, T., van Driel, P.: Covariantly coupled chiral algebras. Nucl. Phys.B357, 632–654 (1991)
  19. Fehér, L., O'Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.: Generalized Toda theories andW-algebras associated with integral gradings. Ann. Phys. (N. Y.)213, 1–20 (1992)
  20. Frappat, L., Ragoucy, E., Sorba, P.:W-algebras and superalgebras from constrained WZW models: A group theoretical classification. Commun. Math. Phys.157, 499–548 (1993)
  21. Bershadsky, M., Ooguri, H.: HiddenSL(n) symmetry in conformal field theories. Commun. Math. Phys.126, 49–83 (1989)
  22. Figueroa-O'Farrill, J.M.: On the homological construction of Casimir algebras. Nucl. Phys.B343, 450–466 (1990)
  23. Feigin Boris, Frenkel Edward, Quantization of the Drinfeld-Sokolov reduction, 10.1016/0370-2693(90)91310-8
  24. Frenkel, E., Kac, V.G., Wakimoto, M.: Characters and fusion rules forW-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys.147, 295–328 (1992)
  25. de Boer, J., Tjin, T.: The relation between quantumW algebras and Lie algebras. Commun. Math. Phys.160, 317–332 (1994)
  26. Sevrin Alexander, Troost Walter, Extensions of the Virasoro algebra and gauged WZW models, 10.1016/0370-2693(93)91617-v
  27. Fehér, L., O'Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.: On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories. Phys. Rep.222, 1–64 (1992)
  28. Bilal Adel, Gervais Jean-Loup, Systematic approach to conformal systems with extended Virasoro symmetries, 10.1016/0370-2693(88)91602-4
  29. Saveliev, M.: On some connections and extensions ofW-algebras. Mod. Phys. Lett.A5, 2223–2229 (1990)
  30. Mansfield, P., Spence, B.: Toda theory, the geometry ofW-algebras and minimal models. Nucl. Phys.B362, 294–328 (1991)
  31. Dynkin E. B., Semisimple subalgebras of semisimple Lie algebras, 10.1090/trans2/006/02
  32. Polyakov, A.M.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys.A5, 833–842 (1990)
  33. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys.139, 71–82 (1991)
  34. Fehér L., O'Raifeartaigh L., Ruelle P., Tsutsui I., Rational versus polynomial character of Wln-algebras, 10.1016/0370-2693(92)90015-v
  35. Bowcock, P., Watts, G.M.T.: On the classification of quantumW-algebras. Nucl. Phys.379B, 63–96 (1992)
  36. Goddard Peter, Schwimmer Adam, Factoring out free fermions and superconformal algebras, 10.1016/0370-2693(88)91470-0
  37. Fehér L., O'Raifeartaigh L., Tsutsui I., The vacuum preserving Lie algebra of a classical W-algebra, 10.1016/0370-2693(93)90325-c
  38. Beukers, F.: Differential Galois theory. In: From number theory to physics. Waldschmidt, M., Moussa, P., Lucke, J.-M., Itzykson, C. (eds.), Berlin, Heidelberg, New York: Springer 1992
  39. Deckmyn, A., Thielemans, K.: Factoring out free fields. Preprint KUL-TF-93/26 (1993), hepth/9306129
  40. Delduc F., Frappat L., Sorba P., Toppan F., Ragoucy E., Rational W algebras from composite operators, 10.1016/0370-2693(93)91539-y
  41. Di Francesco, P., Itzykson, C., Zuber, J.-H.: ClassicalW-algebras. Commun. Math. Phys.140, 543–567 (1991)
  42. Bonora, L., Xiong, C.S.: Covariantsl 2 decomposition of thesl n Drinfeld-Sokolov equations and theW n -algebras. Int. J. Mod. Phys.A7, 1507–1525 (1992)