User menu

A new chance-constrained DEA model with birandom input and output data

Bibliographic reference Tavana, Madjid ; Khanjani Shiraz, Rashed ; Hatami-Marbini, Adel. A new chance-constrained DEA model with birandom input and output data. In: The Journal of the Operational Research Society, Vol. 65, no. 12, p. 1824-1839 (2014)
Permanent URL http://hdl.handle.net/2078.1/153257
  1. Adler Nicole, Friedman Lea, Sinuany-Stern Zilla, Review of ranking methods in the data envelopment analysis context, 10.1016/s0377-2217(02)00068-1
  2. Andersen Per, Petersen Niels Christian, A Procedure for Ranking Efficient Units in Data Envelopment Analysis, 10.1287/mnsc.39.10.1261
  3. Azadi Majid, Saen Reza Farzipoor, A new chance-constrained data envelopment analysis for selecting third-party reverse logistics providers in the existence of dual-role factors, 10.1016/j.eswa.2011.04.001
  4. Banker Rajiv D., Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation, 10.1287/mnsc.39.10.1265
  5. Banker Rajiv D., Hypothesis tests using data envelopment analysis, 10.1007/bf00157038
  6. Banker R. D., Charnes A., Cooper W. W., Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, 10.1287/mnsc.30.9.1078
  7. Bardhan I, Bowlin WF, Cooper WW and Sueyoshi T (1996). Models for efficiency dominance in data envelopment analysis. Part I: Additive models and MED measures. Journal of the Operations Research Society of Japan 39 (3): 322–332.
  8. Bruni M.E., Conforti D., Beraldi P., Tundis E., Probabilistically constrained models for efficiency and dominance in DEA, 10.1016/j.ijpe.2008.10.011
  9. Ceyhan ME and Benneyan JC (2011). Handling estimated proportions in public sector data envelopment analysis. Annals of Operations Research 191 (November): 1–26.
  10. Charnes A., Cooper W. W., Chance-Constrained Programming, 10.1287/mnsc.6.1.73
  11. Charnes A., Cooper W.W., Rhodes E., Measuring the efficiency of decision making units, 10.1016/0377-2217(78)90138-8
  12. Cooper W. W., Huang Zhimin, Li Susan X., Chapter 13 Satisficing DEA models under chance constraints, 10.1007/bf02187302
  13. Cooper William W., Huang Zhimin, Lelas Vedran, Li Susan X., Olesen Ole B., 10.1023/a:1018320430249
  14. Cooper W W, Deng H, Huang Z, Li S X, Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis, 10.1057/palgrave.jors.2601433
  15. Cooper William W., Deng H., Huang Zhimin, Li Susan X., Chance constrained programming approaches to congestion in stochastic data envelopment analysis, 10.1016/s0377-2217(02)00901-3
  16. Despotis Dimitris K., Smirlis Yiannis G., Data envelopment analysis with imprecise data, 10.1016/s0377-2217(01)00200-4
  17. Doyle John, Green Rodney, Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses, 10.1057/jors.1994.84
  18. Farrell M. J., The Measurement of Productive Efficiency, 10.2307/2343100
  19. Gijbels Irène, Mammen Enno, Park Byeong U., Simar Léopold, On Estimation of Monotone and Concave Frontier Functions, 10.1080/01621459.1999.10473837
  20. Halme Merja, Joro Tarja, Korhonen Pekka, Salo Seppo, Wallenius Jyrki, A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis, 10.1287/mnsc.45.1.103
  21. Hossain Md. Kamrul, Kamil Anton Abdulbasah, Mustafa Adli, Baten Md. Azizul, Efficiency in the Worst Production Situation Using Data Envelopment Analysis, 10.1155/2013/354509
  22. Hosseinzadeh Lotfi F., Nematollahi N., Behzadi M.H., Mirbolouki M., Moghaddas Z., Centralized resource allocation with stochastic data, 10.1016/j.cam.2011.10.009
  23. Huang Zhimin, Li Susan X., Dominance stochastic models in data envelopment analysis, 10.1016/0377-2217(95)00293-6
  24. Huang Zhimin, Li Susan X., 10.1023/a:1007874304917
  25. Jahanshahloo G.R., Afzalinejad M., A ranking method based on a full-inefficient frontier, 10.1016/j.apm.2005.03.023
  26. Jahanshahloo G.R., Khodabakhshi M., Hosseinzadeh Lotfi F., Moazami Goudarzi M.R., A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case, 10.1016/j.mcm.2011.01.025
  27. Kao Chiang, Liu Shiang-Tai, Fuzzy efficiency measures in data envelopment analysis, 10.1016/s0165-0114(98)00137-7
  28. Khodabakhshi M., Estimating most productive scale size with stochastic data in data envelopment analysis, 10.1016/j.econmod.2009.03.002
  29. Khodabakhshi Mohammad, An output oriented super-efficiency measure in stochastic data envelopment analysis: Considering Iranian electricity distribution companies, 10.1016/j.cie.2010.01.009
  30. Khodabakhshi M., Super-efficiency in stochastic data envelopment analysis: An input relaxation approach, 10.1016/j.cam.2010.03.023
  31. Khodabakhshi M., Asgharian M., An input relaxation measure of efficiency in stochastic data envelopment analysis, 10.1016/j.apm.2008.05.006
  32. Khodabakhshi M., Asgharian M., Gregoriou Greg N., An input-oriented super-efficiency measure in stochastic data envelopment analysis: Evaluating chief executive officers of US public banks and thrifts, 10.1016/j.eswa.2009.06.091
  33. Kneip Alois, Park Byeong U., Simar Léopold, A NOTE ON THE CONVERGENCE OF NONPARAMETRIC DEA ESTIMATORS FOR PRODUCTION EFFICIENCY SCORES, 10.1017/s0266466698146042
  34. Kuah Chuen Tse, Wong Kuan Yew, Wong Wai Peng, Monte Carlo Data Envelopment Analysis with Genetic Algorithm for Knowledge Management performance measurement, 10.1016/j.eswa.2012.02.140
  35. Land Kenneth C., Lovell C. A. Knox, Thore Sten, Chance-constrained data envelopment analysis, 10.1002/mde.4090140607
  36. Lertworasirikul Saowanee, Fang Shu-Cherng, A. Joines Jeffrey, L.W. Nuttle Henry, Fuzzy data envelopment analysis (DEA): a possibility approach, 10.1016/s0165-0114(02)00484-0
  37. Li Susan X., Stochastic models and variable returns to scales in data envelopment analysis, 10.1016/s0377-2217(97)00002-7
  38. Li Shanling, Jahanshahloo G.R., Khodabakhshi M., A super-efficiency model for ranking efficient units in data envelopment analysis, 10.1016/j.amc.2006.06.063
  39. Liu Baoding, Theory and Practice of Uncertain Programming, ISBN:9783662131961, 10.1007/978-3-7908-1781-2
  40. Lu Wen-Min, Lo Shih-Fang, An interactive benchmark model ranking performers — Application to financial holding companies, 10.1016/j.mcm.2008.06.008
  41. Morita Hiroshi, Seiford Lawrence M, Characteristics on stochastic dea efficiency -reliability and probability being efficient-, 10.1016/s0453-4514(00)87109-4
  42. Noguchi Hiroshi, Ogawa Masaru, Ishii Hiroaki, The appropriate total ranking method using DEA for multiple categorized purposes, 10.1016/s0377-0427(02)00425-9
  43. Noura A.A., Hosseinzadeh Lotfi F., Jahanshahloo G.R., Fanati Rashidi S., Super-efficiency in DEA by effectiveness of each unit in society, 10.1016/j.aml.2010.11.025
  44. Olesen O. B., Comparing and Combining Two Approaches for Chance Constrained DEA, 10.1007/s11123-006-0008-4
  45. Olesen O. B., Petersen N. C., Chance Constrained Efficiency Evaluation, 10.1287/mnsc.41.3.442
  46. Peng Jin, Liu Baoding, Birandom variables and birandom programming, 10.1016/j.cie.2004.11.003
  47. Peng J and Zhao X (2006). Some theoretical aspects of the critical values of birandom variable. Journal of Information and Computer Science 1 (4): 225–234.
  48. Simar Léopold, Wilson Paul W., Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models, 10.1287/mnsc.44.1.49
  49. Simar Léopold, Zelenyuk Valentin, Stochastic FDH/DEA estimators for frontier analysis, 10.1007/s11123-010-0170-6
  50. Sinuany-Stern Zilla, Mehrez Abraham, Barboy Arieh, Academic departments efficiency via DEA, 10.1016/0305-0548(94)90103-1
  51. Sueyoshi Toshiyuki, DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives, 10.1016/s0305-0483(98)00057-7
  52. Thanassoulis E., Dyson R.G., Estimating preferred target input-output levels using data envelopment analysis, 10.1016/0377-2217(92)90294-j
  53. Torgersen Arne Martin, F�rsund Finn R., Kittelsen Sverre A. C., Slack-adjusted efficiency measures and ranking of efficient units, 10.1007/bf00162048
  54. Tziogkidis P (2012). The Simar and Wilson’s Bootstrap DEA approach: A Critique. Cardiff Economics Working Papers, No. E2012/19.
  55. Wang Ying-Ming, Luo Ying, Lan Yi-Xin, Common weights for fully ranking decision making units by regression analysis, 10.1016/j.eswa.2011.01.004
  56. Wong Wai Peng, Performance evaluation of supply chain in stochastic environment: using a simulation based DEA framework, 10.1504/ijbpscm.2009.030642
  57. Wu Desheng (Dash), Lee Chi-Guhn, Stochastic DEA with ordinal data applied to a multi-attribute pricing problem, 10.1016/j.ejor.2010.06.029
  58. Xu Jiuping, Zhou Xiaoyang, A class of multi-objective expected value decision-making model with birandom coefficients and its application to flow shop scheduling problem, 10.1016/j.ins.2009.04.009
  59. Xu Jiuping, Ding Can, A class of chance constrained multiobjective linear programming with birandom coefficients and its application to vendors selection, 10.1016/j.ijpe.2011.02.020
  60. Yang Feng, Ang Sheng, Xia Qiong, Yang Chenchen, Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis, 10.1016/j.ejor.2012.07.001
  61. Yang L and Liu B (2006). A sufficient and necessary condition for chance distribution of birandom variable. Information 9 (1): 33–36.
  62. Yu Peng, Lee Jang Hee, A hybrid approach using two-level SOM and combined AHP rating and AHP/DEA-AR method for selecting optimal promising emerging technology, 10.1016/j.eswa.2012.07.043