User menu

Bayesian penalized smoothing approaches in models specified using differential equations with unknown error distributions

Bibliographic reference Jaeger, Jonathan ; Lambert, Philippe. Bayesian penalized smoothing approaches in models specified using differential equations with unknown error distributions. In: Journal of Applied Statistics, Vol. 41, no.12, p. 2709-2726 (2014)
Permanent URL http://hdl.handle.net/2078.1/152633
  1. Cao J., Zhao H., Estimating dynamic models for gene regulation networks, 10.1093/bioinformatics/btn246
  2. Davidian M., Nonlinear Models for Repeated Measurement Data (1995)
  3. de Boor C., A Practical Guide to Splines (2001)
  4. Diebolt J., J. R. Stat. Soc. Ser. B, 56, 363 (1994)
  5. Eilers Paul H. C., Marx Brian D., Flexible smoothing with B -splines and penalties, 10.1214/ss/1038425655
  6. Haario Heikki, Saksman Eero, Tamminen Johanna, An Adaptive Metropolis Algorithm, 10.2307/3318737
  7. Jaeger Jonathan, Lambert Philippe, Bayesian P-spline estimation in hierarchical models specified by systems of affine differential equations, 10.1177/1471082x12471371
  8. KomÁrek Arnošt, Lesaffre Emmanuel, Bayesian Accelerated Failure Time Model With Multivariate Doubly Interval-Censored Data and Flexible Distributional Assumptions, 10.1198/016214507000000563
  9. Lambert Philippe, Archimedean copula estimation using Bayesian splines smoothing techniques, 10.1016/j.csda.2007.01.018
  10. Lambert Philippe, Nonparametric additive location-scale models for interval censored data, 10.1007/s11222-011-9292-6
  11. Lambert Philippe, Eilers Paul H.C., Bayesian density estimation from grouped continuous data, 10.1016/j.csda.2008.11.022
  12. Lindsey J. K., Wang J., Jones B., Byrom W. D., Hind I. D., Simultaneous modelling of flosequinan and its metabolite, 10.1007/s002280050704
  13. Lunn David J., Best Nicky, Thomas Andrew, Wakefield Jon, Spiegelhalter David, 10.1023/a:1020206907668
  14. Ramsay J. O., Hooker G., Campbell D., Cao J., Parameter estimation for differential equations: a generalized smoothing approach : Parameter Estimation for Differential Equations, 10.1111/j.1467-9868.2007.00610.x
  15. Ramsay James, Functional Data Analysis, 10.1002/0470013192.bsa239
  16. Richardson Sylvia., Green Peter J., On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion), 10.1111/1467-9868.00095
  17. Rowland M., Clinical Pharmacokinetics: Concepts and Applications (1995)
  18. Stephens Matthew, Dealing with label switching in mixture models, 10.1111/1467-9868.00265
  19. Tanner Martin A., Wong Wing Hung, The Calculation of Posterior Distributions by Data Augmentation, 10.1080/01621459.1987.10478458
  20. Varah J. M., A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations, 10.1137/0903003