User menu

Multiscale modelling framework for the fracture of thin brittle polycrystalline films: application to polysilicon

Bibliographic reference Mulay, Shantanu S. ; Becker, Gauthier ; Vayrette, Renaud ; Raskin, Jean-Pierre ; Pardoen, Thomas ; et. al. Multiscale modelling framework for the fracture of thin brittle polycrystalline films: application to polysilicon. In: Computational Mechanics : solids, fluids, engineered materials, aging, infrastructure, molecular dynamics, heat transfer, manufacturing processes, optimization, fracture and integrity, Vol. 55, no. 1, p. 73-91 (2015)
Permanent URL
  1. DelRio Frank W., Dunn Martin L., Boyce Brad L., Corwin Alex D., de Boer Maarten P., The effect of nanoparticles on rough surface adhesion, 10.1063/1.2197263
  2. Suwito Wan, Dunn Martin L., Cunningham Shawn J., Read David T., Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructures, 10.1063/1.369711
  3. Sharpe W. N., Turner K. T., Edwards R. L., Tensile testing of polysilicon, 10.1007/bf02323548
  4. Sharpe W.N., Jackson K.M., Hemker K.J., Xie Z., Effect of specimen size on Young's modulus and fracture strength of polysilicon, 10.1109/84.946774
  5. Coenen E. W. C., Kouznetsova V. G., Bosco E., Geers M. G. D., A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework, 10.1007/s10704-012-9765-4
  6. Nguyen Vinh Phu, Lloberas-Valls Oriol, Stroeven Martijn, Sluys Lambertus Johannes, Computational homogenization for multiscale crack modeling. Implementational and computational aspects : COMPUTATIONAL HOMOGENIZATION FOR CRACKS IN QUASI-BRITTLE MATERIALS, 10.1002/nme.3237
  7. Mercatoris B. C. N., Massart T. J., A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry, 10.1002/nme.3018
  8. Belytschko Ted, Loehnert Stefan, Song Jeong-Hoon, Multiscale aggregating discontinuities: A method for circumventing loss of material stability, 10.1002/nme.2156
  9. Verhoosel Clemens V., Remmers Joris J. C., Gutiérrez Miguel A., de Borst René, Computational homogenization for adhesive and cohesive failure in quasi-brittle solids, 10.1002/nme.2854
  10. Tang Shan, Kopacz Adrian M., Chan O’Keeffe Stephanie, Olson Gregory B., Liu Wing Kam, Concurrent multiresolution finite element: formulation and algorithmic aspects, 10.1007/s00466-013-0874-3
  11. Tang Shan, Kopacz Adrian M., Chan O׳Keeffe Stephanie, Olson Gregory B., Liu Wing Kam, Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography, 10.1016/j.jmps.2013.07.007
  12. Kerfriden P., Goury O., Rabczuk T., Bordas S.P.A., A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics, 10.1016/j.cma.2012.12.004
  13. Holl M., Loehnert S., Wriggers P., An adaptive multiscale method for crack propagation and crack coalescence : MULTISCALE METHOD FOR CRACK PROPAGATION AND CRACK COALESCENCE, 10.1002/nme.4373
  14. Wu L., Tjahjanto D., Becker G., Makradi A., Jérusalem A., Noels L., A micro–meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method, 10.1016/j.engfracmech.2013.03.018
  15. Dugdale D.S., Yielding of steel sheets containing slits, 10.1016/0022-5096(60)90013-2
  16. Barenblatt G.I., The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Advances in Applied Mechanics (1962) ISBN:9780120020072 p.55-129, 10.1016/s0065-2156(08)70121-2
  17. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131:AID-NME726>3.0.CO;2-J
  18. Moës Nicolas, Belytschko Ted, Extended finite element method for cohesive crack growth, 10.1016/s0013-7944(01)00128-x
  19. Armero Francisco, Linder Christian, Numerical simulation of dynamic fracture using finite elements with embedded discontinuities, 10.1007/s10704-009-9413-9
  20. Borst René de, Gutiérrez Miguel A., Wells Garth N., Remmers Joris J. C., Askes Harm, Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis, 10.1002/nme.963
  21. Hillerborg A., Modéer M., Petersson P.-E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, 10.1016/0008-8846(76)90007-7
  22. Camacho G.T., Ortiz M., Computational modelling of impact damage in brittle materials, 10.1016/0020-7683(95)00255-3
  23. Ortiz M., Pandolfi A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, 10.1002/(sici)1097-0207(19990330)44:9<1267::aid-nme486>;2-7
  24. Noels L., Radovitzky R., A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications, 10.1002/nme.1699
  25. Mergheim J., Kuhl E., Steinmann P., A hybrid discontinuous Galerkin/interface method for the computational modelling of failure, 10.1002/cnm.689
  26. Radovitzky R., Seagraves A., Tupek M., Noels L., A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method, 10.1016/j.cma.2010.08.014
  27. Becker G., Geuzaine C., Noels L., A one field full discontinuous Galerkin method for Kirchhoff–Love shells applied to fracture mechanics, 10.1016/j.cma.2011.07.008
  28. Becker G., Noels L., A full-discontinuous Galerkin formulation of nonlinear Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation, and fracture applications : A FULL-DG FORMULATION OF NONLINEAR KIRCHHOFF-LOVE SHELLS, 10.1002/nme.4381
  29. Charles Y., A finite element formulation to model extrinsic interfacial behavior, 10.1016/j.finel.2014.05.008
  30. Nguyen Vinh Phu, Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in computational fracture mechanics, 10.1016/j.engfracmech.2014.07.003
  31. Greek Staffan, Ericson Fredric, Johansson Stefan, Fürtsch Matthias, Rump Arnold, Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures, 10.1088/0960-1317/9/3/305
  32. Sharpe WN, Yuan B, Vaidyanathan R, Edwards RL (1996) New test structures and techniques for measurement of mechanical properties of MEMS materials. In: Microlithography and Metrology in Micromachining II, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2880, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2880, pp. 78–91
  33. Van Arsdell W.W., Brown S.B., Subcritical crack growth in silicon MEMS, 10.1109/84.788636
  34. Gravier S., Coulombier M., Safi A., Andre N., Boe A., Raskin J.-P., Pardoen T., New On-Chip Nanomechanical Testing Laboratory - Applications to Aluminum and Polysilicon Thin Films, 10.1109/jmems.2009.2020380
  35. Escobedo-Cousin E., Olsen S. H., Pardoen T., Bhaskar U., Raskin J.-P., Experimental observations of surface roughness in uniaxially loaded strained Si microelectromechanical systems-based structures, 10.1063/1.3669413
  36. Bhaskar Umesh, Passi Vikram, Houri Samer, Escobedo-Cousin Enrique, Olsen Sarah H., Pardoen Thomas, Raskin Jean-Pierre, On-chip tensile testing of nanoscale silicon free-standing beams, 10.1557/jmr.2011.340
  37. Passi Vikram, Bhaskar Umesh, Pardoen Thomas, Sodervall Ulf, Nilsson Bengt, Petersson Göran, Hagberg Mats, Raskin Jean-Pierre, High-Throughput On-Chip Large Deformation of Silicon Nanoribbons and Nanowires, 10.1109/jmems.2012.2190711
  38. Ureña Ferran, Olsen Sarah H., Šiller Lidija, Bhaskar Umesh, Pardoen Thomas, Raskin Jean-Pierre, Strain in silicon nanowire beams, 10.1063/1.4765025
  39. Kumar Bhaskar Umesh, Pardoen Thomas, Passi Vikram, Raskin Jean-Pierre, Piezoresistance of nano-scale silicon up to 2 GPa in tension, 10.1063/1.4788919
  40. Noels L., Radovitzky R., An explicit discontinuous Galerkin method for non-linear solid dynamics: Formulation, parallel implementation and scalability properties, 10.1002/nme.2213
  41. Hulbert Gregory M., Chung Jintai, Explicit time integration algorithms for structural dynamics with optimal numerical dissipation, 10.1016/s0045-7825(96)01036-5
  42. Yi Taechung, Li Lu, Kim Chang-Jin, Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength, 10.1016/s0924-4247(00)00350-2
  43. Sato Kazuo, Yoshioka Tetsuo, Ando Taeko, Shikida Mitsuhiro, Kawabata Tatsuo, Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip, 10.1016/s0924-4247(98)00125-3
  44. Gilman John J., Direct Measurements of the Surface Energies of Crystals, 10.1063/1.1735524
  45. Messmer C., Bilello J. C., The surface energy of Si, GaAs, and GaP, 10.1063/1.329342
  46. Hopcroft Matthew A., Nix William D., Kenny Thomas W., What is the Young's Modulus of Silicon?, 10.1109/jmems.2009.2039697
  47. Alzebdeh K., Ostoja-Starzewski M., Micromechanically based stochastic finite elements: length scales and anisotropy, 10.1016/0266-8920(96)00015-x
  48. Ostoja-Starzewski M., Random field models of heterogeneous materials, 10.1016/s0020-7683(97)00144-3
  49. Lucas V, Wu L, Arnst M, Jean-Claude G, Paquay S, Nguyen VD, Noels L (2014) Prediction of macroscopic mechanical properties of a polycrystalline microbeam subjected to material uncertainties. In: Cunha A, Caetano E, Ribeiro P, Müller G (eds) Proceedings of the 9th International Conf erence on Structural Dynamics, EURODYN 2014, pp. 2691–2698
  50. Galceran M., Albou A., Renard K., Coulombier M., Jacques P.J., Godet S., Automatic Crystallographic Characterization in a Transmission Electron Microscope: Applications to Twinning Induced Plasticity Steels and Al Thin Films, 10.1017/s1431927613000445
  51. Tsuchiya T, Tabata O, Sakata J, Taga Y, Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin films. In: Micro Electro Mechanical Systems, 1997. MEMS ’97, Proceedings, IEEE. Tenth Annual International Workshop on (1997), pp. 529–534