User menu

School system evaluation by value added analysis under endogeneity

Bibliographic reference Manzi, Jorge ; San Martin, Ernesto ; Van Bellegem, Sébastien. School system evaluation by value added analysis under endogeneity. In: Psychometrika, Vol. 79, no.1, p. 130-153 (2014)
Permanent URL http://hdl.handle.net/2078.1/151691
  1. Aitkin M., Longford N., Statistical Modelling Issues in School Effectiveness Studies, 10.2307/2981882
  2. Angrist Joshua D, Krueger Alan B, Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments, 10.1257/jep.15.4.69
  3. Blundell Richard, Bond Stephen, Initial conditions and moment restrictions in dynamic panel data models, 10.1016/s0304-4076(98)00009-8
  4. Bollen, K.A. (1989). Structural equations with latent variables. London: Wiley.
  5. Bollen Kenneth A., Latent Variables in Psychology and the Social Sciences, 10.1146/annurev.psych.53.100901.135239
  6. Braun, H., Chudowsky N., & Koening, J. (2010). Getting value out of value-added: report of a workshop. Washington: The National Academics.
  7. Briggs D. C., Weeks J. P., The Persistence of School-Level Value-Added, 10.3102/1076998610396887
  8. Corvalán, J., Elaqua G., & de Wolf, I. (2010). El sector particular subvencionado en Chile. Tipologización y perspectivas frente a las nuevas regulaciones. In Ministry of Education of the Chilean Government (Ed.), Evidencias para políticas públicas en educación (pp. 11–40). Santiago: MINEDUC.
  9. Ebbes Peter, Bockenholt Ulf, Wedel Michel, Regressor and random-effects dependencies in multilevel models, 10.1046/j.0039-0402.2003.00254.x
  10. Engle Robert F., Hendry David F., Richard Jean-Francois, Exogeneity, 10.2307/1911990
  11. EPI Briefing Paper (2010). Problems with the use of student test scores to evaluate teachers. Washington: Economic Policy Institute.
  12. Florens Jean-Pierre, Johannes Jan, Van Bellegem Sébastien, Instrumental regression in partially linear models : Partially linear instrumental regression, 10.1111/j.1368-423x.2011.00358.x
  13. Florens J.-P., Mouchart M., A Linear Theory for Noncausality, 10.2307/1911729
  14. Florens, J.P., Mouchart, M., & Rolin, J.M. (1990). Elements of Bayesian statistics. New York: Dekker.
  15. Gansle, K.A., Noell, G.H., & Burns, J.M. (2012). Do student achievement outcomes differ across teacher preparation programs? An analysis of teacher education in Lousiana. Journal of Teacher Education. doi: 10.1177/0022487112439894 .
  16. Goldstein, H. (2001). Multilevel statistical models. London: Arnold.
  17. Gray, J., Hopkins, D., Reynolds, D., Wilcox, B., Farrell, S., & Jesson, D. (1999). Improving schools: performance and potential. Buckingham: Open University Press.
  18. Grilli Leonardo, Rampichini Carla, The Role of Sample Cluster Means in Multilevel Models : A View on Endogeneity and Measurement Error Issues, 10.1027/1614-2241/a000030
  19. Hanchane Saïd, Mostafa Tarek, Solving endogeneity problems in multilevel estimation: an example using education production functions, 10.1080/02664763.2011.638705
  20. Hansen Lars Peter, Large Sample Properties of Generalized Method of Moments Estimators, 10.2307/1912775
  21. Hanushek, E.A. (2006). School resources. In E.A. Hanushek, & F. Welch (Eds.), Handbook of the economics of education (pp. 865–908). Amsterdam: Elsevier.
  22. Hendry David F., Dynamic Econometrics, ISBN:9780198283164, 10.1093/0198283164.001.0001
  23. Kim Jee-Seon, Frees Edward W., Omitted Variables in Multilevel Models, 10.1007/s11336-005-1283-0
  24. Kim Jee-Seon, Frees Edward W., Multilevel Modeling with Correlated Effects, 10.1007/s11336-007-9008-1
  25. Kyriakides Leonidas, Using international comparative studies to develop the theoretical framework of educational effectiveness research: A secondary analysis of TIMSS 1999 data, 10.1080/13803610600873986
  26. Lazarsfeld, P.F. (1950). The logical and mathematical foundation of latent structural analysis. In S.S. Stout (Ed.), Measurement and prediction (pp. 362–412). Princeton: Princeton University Press.
  27. Manzi, J., Martín, E., & Van Bellegem, S. (2011). School system evaluation by value-added analysis under endogeneity (Technical Report No. IT1-102). Measurement Center MIDE UC.
  28. McPherson, A.F. (1992). Measuring added value in schools. London: National Commission of Education.
  29. Mundlak Yair, On the Pooling of Time Series and Cross Section Data, 10.2307/1913646
  30. OECD (2008). Measuring improvements in learning outcomes. Best practices to assess the value-added of schools. Organisation for Economic Co-operation and Development OECD.
  31. Paredes, R.D., & Paredes, V. (2009). Chile: academic performance and educational management under a rigid employment regime. CEPAL Review, 99, 117–129.
  32. Jung Peng Wen, Thomas Sally M., Yang Xijie, Li Jianzhong, Developing school evaluation methods to improve the quality of schooling in China: a pilot ‘value added’ study, 10.1080/09695940600843252
  33. Picci Giorgio, Parametrization of factor analysis models, 10.1016/0304-4076(89)90041-9
  34. R Development Core Team (2011) R: a language and environment for statistical computing [computer software manual], Vienna, Austria. Available from http://www.R-project.org/ . ISBN 3-900051-07-0.
  35. Raudenbush S. W., What Are Value-Added Models Estimating and What Does This Imply for Statistical Practice?, 10.3102/10769986029001121
  36. Raudenbush, S.W., & Bryk, A.S. (2001). Hierarchical linear models: applications and data analysis method. London: Sage.
  37. Raudenbush Stephen W., Willms J. Douglas, The Estimation of School Effects, 10.2307/1165304
  38. Ray, A. (2006). School value added measures in England (Technical Report). Department for Education and Skills.
  39. Ray Andrew, McCormack Tanya, Evans Helen, Value Added in English Schools, 10.1162/edfp.2009.4.4.415
  40. Reardon Sean F., Raudenbush Stephen W., Assumptions of Value-Added Models for Estimating School Effects, 10.1162/edfp.2009.4.4.492
  41. ROSENBAUM PAUL R., RUBIN DONALD B., The central role of the propensity score in observational studies for causal effects, 10.1093/biomet/70.1.41
  42. San Martín Ernesto, Rolin Jean-Marie, Identification of parametric Rasch-type models, 10.1016/j.jspi.2012.06.014
  43. Sapelli, C., & Vial, B. (2002). The performance of private and public schools in the Chilean voucher system. Cuadernos de Economía, 39, 423–454.
  44. SIMCE (2009). Resultados nacionales SIMCE 2008. Unidad de Currículum y Evaluación (UCE), Ministerio de Educación, Gobierno de Chile. Available at http://www.simce.cl/index.php?id=430 .
  45. Skrondal Anders, Rabe-Hesketh Sophia, Generalized Latent Variable Modeling : Multilevel, Longitudinal, and Structural Equation Models, ISBN:9781584880004, 10.1201/9780203489437
  46. Snijders, T., & Bosker, R. (1999). Multilevel analysis: an introduction to basic and advanced multilevel modeling. London: Sage.
  47. Spencer Neil H., Fielding Antony, 10.1007/s001800200093
  48. Tekwe C. D., Carter R. L., Ma C.-X., Algina J., Lucas M. E., Roth J., Ariet M., Fisher T., Resnick M. B., An Empirical Comparison of Statistical Models for Value-Added Assessment of School Performance, 10.3102/10769986029001011
  49. Thomson Sue, Examining the evidence from TIMSS: Gender differences in Year 8 science achievement in Australia, 10.1016/j.stueduc.2008.04.003
  50. Timmermans Anneke C., Doolaard Simone, de Wolf Inge, Conceptual and empirical differences among various value-added models for accountability, 10.1080/09243453.2011.590704
  51. White Halbert, A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, 10.2307/1912934
  52. Willms J. Douglas, Raudenbush Stephen W., A Longitudinal Hierarchical Linear Model for Estimating School Effects and Their Stability, 10.1111/j.1745-3984.1989.tb00329.x
  53. Wooldridge, J. (2008). Introductory econometrics: a modern approach (4th ed.). Mason: South-Western College Pub.