
Université catholique de Louvain

Ecole polytechnique de Louvain

Institut de Mécanique, Matériaux et Génie Civil

An immersed interface
vortex particle-mesh method

Yves Marichal

Composition du jury:

Pr. I. Doghri (UCL, président)

Pr. G. Winckelmans (UCL, promoteur)

Pr. P. Chatelain (UCL, promoteur)

Dr. M. Duponcheel (UCL)

Dr. K. Hillewaert (Cenaero)

Pr. P. Poncet (UPPA)

Thèse présentée en vue de

l’obtention du grade de docteur

en sciences de l’ingénieur

Louvain-la-Neuve,

Septembre 2014

©2014

Yves Marichal

All Rights Reserved

A la mémoire de Maman et Dominique.

Acknowledgments

Je ne pourrais entamer ces remerciements sans exprimer ma sincère reconnais-

sance envers mes promoteurs, Grégoire Winckelmans et Philippe Chatelain. Je

leur adresse toute ma gratitude pour la passion qu’ils m’ont communiquée et

pour le soutien qu’ils m’ont apporté dans les bons et les mauvais moments.

Mais aussi, et surtout, je les remercie d’avoir cru en moi, à défaut de le faire

moi-même par moments. Je remercie Grégoire tout particulièrement pour sa

rigueur, son optimisme, son investissement et ... son extrême efficacité dans la

remise de ses corrections. Je remercie Philippe spécialement pour son enthou-

siasme, son imagination débordante et pour sa disponibilité quasi permanente.

En termes d’encadrement, je souhaite également citer Matthieu Duponcheel,

au vu de son aide et de tout le temps qu’il m’a consacré. Merci à Matthieu

pour sa générosité, son désir d’aider les gens, ses conseils, sa clairvoyance et

pour sa persévérance dans la recherche de solutions.

Je désire remercier Koen Hillewaert, Philippe Poncet, ainsi que Matthieu

d’avoir accepté de faire partie de mon jury et d’avoir pris le temps de relire

ce travail. J’ai apprécié leurs remarques pertinentes lors de ma défense et le

regard critique qu’ils y ont apporté. Merci aussi à Issam Doghri d’avoir accepté

de présider le jury au pied levé. Par la même occasion, je voudrais remercier

Philippe Geuzaine pour sa participation à mon comité d’accompagnement.

J’exprime ma gratitude au F.R.S.-FNRS (Fonds de la Recherche Scien-

tifique), qui m’a permis de réaliser cette thèse en m’accordant une bourse

d’aspirant FNRS. Je remercie Cenaero (Centre of Excellence in Aeronauti-

cal Research) et le C.I.S.M. (Centre de calcul intensif et de stockage de masse

de l’UCL) pour la mise à disposition des ressources de calcul me permettant

d’effectuer les simulations nécessaires à ma thèse.

Les années passées au sein du pôle TFL ont été mémorables grâce aux mo-

ments partagés ensemble. On ne s’ennuie pas au TFL : Saint-Eloi, séminaires

vi

et conférences, courses à pied, matchs de foot et de badminton, journées de

pôle et drinks rythment le chemin parfois trop studieux du thésard. Je ne peux

malheureusement pas nommer de manière exhaustive l’ensemble des personnes

avec lesquelles je partage d’excellents souvenirs, en termes de collaboration ou

même d’amitié : Laurent B., Isabelle, Ivan, Matthieu, Christos, Hervé, Philippe

P., Pierre, Tim, Francesco, Subir,...

Je tiens tout particulièrement à citer Nicolas B., Benjamin, Corentin, Haddy,

Panos et François H., sans lesquels mon séjour dans le pôle n’aurait clairement

pas eu la même saveur. Certains ont partagé mon bureau, certains y venaient

souvent pour discuter et d’autres venaient essentiellement pour les drinks. Bien

entendu, s’ajoutent à cela des tas d’activités en commun, comme les matchs au

stade, les fameux cours GrasMech (avec les soirées qui les précédaient parfois

la veille) ou les soirées entre amis. Par la même occasion, merci à Stefano qui

lors d’un de ces moments privilégiés m’a permis de rencontrer la personne qui

depuis lors partage ma vie...

Ma vie de doctorant aura aussi été marquée par les différents kots ou ap-

partements, dans lesquels j’ai séjourné depuis le début de mes études (rue du

Collège, Germanokot place des Wallons, résidence Pomerol et Bruxelles). J’ai

ainsi eu la chance d’enrichir ma collection d’excellents souvenirs en compagnie

de très bons amis: David, Christine, André, Frank, Moritz, Christoph, Dany,

Pierre, Michael, Jennifer, Katharina, ... Das Kotleben war einfach genial, sowie

die Soirées im Only, im Coq, in der GD, ... Ach ja, vielen Dank für’s Kochen,

Michael (man war Carbonara geil ...).

Merci aussi à tous les autres amis de longue date pour toutes les folies

réalisées ensemble et toutes celles à venir: Pierre-Henri, Aurélie, Gregory, Pol-

Axel, Pierre-Nicolas, Julien, Daniel, Michael, Rinus, ... Au plaisir de se revoir

aux quatre coins de la Belgique (ou d’ailleurs). Merci PH pour nos multiples

discussions ouvertes et sincères. Auf die künftigen Abenteuer und Erlebnisse

in London, Australien oder wo auch immer.

Un tout grand merci à ma famille qui m’a accompagné tout le long de ce

chemin. Un merci tout particulier à Papa et Valérie pour votre amour et votre

soutien inconditionnel.

Finalement, je ne sais pas comment je pourrais assez exprimer ma gratitude

envers Claire, qui a littéralement illuminé ma vie, qui m’a supporté dans les mo-

ments difficiles et qui a tant fait pour moi au jour le jour, afin de m’encourager

quand le besoin en était. Je tiens aussi à remercier sa famille, avec une attention

particulière à sa maman pour sa gentillesse et sa générosité.

Contents

1 Introduction 1

2 Coupling a VPM method with a near-wall FV solver 9

2.1 Vortex-particle mesh solver . 11

2.2 Finite volume solver . 13

2.3 Hybrid FV-VPM solver . 14

2.4 Results . 18

2.5 Conclusion . 26

3 No-slip condition and dipole in a box 29

3.1 Description of the test case . 30

3.2 VPM solver with a no-through flow condition at the wall 31

3.2.1 Computation of the velocity 35

3.2.2 Diffusion and particle-mesh interpolation 36

3.2.3 Time convergence study 37

3.3 Enforcing a no-slip condition at the wall 40

3.3.1 Study of the splitting effect for a prescribed flux 48

3.3.2 Computation of the vorticity flux 59

3.4 Results for the dipole flow in a box at Re = 1000 67

4 Unbounded immersed interface Poisson solver for VPM 73

4.1 Introduction . 74

4.2 Problem statement . 78

4.3 Methodology . 79

4.3.1 Immersed interface approach for the interior boundary . 80

4.3.2 James-Lackner algorithm for the outer boundary 83

4.3.3 Algorithm . 85

4.3.4 Possible extension to 3-D problems 89

viii Contents

4.4 Numerical results . 89

4.4.1 Potential flow with circulation past a cylinder 90

4.4.2 Added mass for an elliptical cylinder without circulation 93

4.4.3 Potential flow with circulation past an airfoil 94

4.4.4 Potential flow past multiple bodies 99

4.5 Conclusion . 100

5 Immersed interface parabolic solver for VPM 103

5.1 One-dimensional case . 103

5.2 Two-dimensional case . 111

5.2.1 Compatible extrapolation scheme 112

5.2.2 Stability analysis . 115

5.2.3 Grid convergence study 120

6 Particle-grid interpolation with a wall 123

6.1 Mesh-to-particles interpolation (M2P) 128

6.1.1 One-dimensional case 128

6.1.2 Two-dimensional case 130

6.1.3 Grid convergence study 133

6.2 Particle-to-mesh interpolation (P2M) 137

6.2.1 Wall data extension approach 137

6.2.2 Alternative approach . 146

7 Immersed interface VPM 149

7.1 Time stepping algorithm . 149

7.1.1 Initialization . 152

7.1.2 Poisson solver . 156

7.1.3 Near-wall diffusion . 157

7.1.4 Particle-mesh interpolation 159

7.2 Results . 160

7.2.1 Impulsively started cylinder 160

7.2.2 Flow past an impulsively started NACA0021 airfoil . . . 174

7.2.3 Flow past a cylinder at Re = 100 180

7.3 Accounting for an outflow condition 183

7.4 Conclusions . 184

Contents ix

8 Disp. and diss. errors due to redistribution in 1-D 187

8.1 Derivation of the numerical dissipation and dispersion errors . . 188

8.2 Results . 195

8.2.1 Averaged numerical errors 200

8.2.2 Recursive application of the redistribution 203

8.2.3 Conclusion . 208

9 Conclusions 209

9.1 Achievements . 209

9.2 Perspectives . 212

Bibliography 216

A One-sided stencils 231

B Additional immersed interface tools 235

B.1 Computation of the velocity field 235

B.2 Wall data for mesh-particle interpolation 236

C Fourier transforms 241

C.1 Definitions of the Fourier transforms 241

C.2 Some redistribution kernels with their Fourier transforms . . . 242

D Vorticity flux associated to a no-slip condition 245

E Time integration schemes for VPM methods 249

E.1 RK3 . 250

E.2 DRK2-END . 252

E.3 DRK2-SUB . 253

E.4 DRK2-CSUB . 254

E.5 SRK2 . 255

E.6 DSRK2-CSUB . 256

E.7 Computation of the wall contributions 257

E.8 Explicit integral formulas for the near-wall diffusion (PW) . . . 257

F Tandem cylinders 259

F.1 Introduction . 260

F.2 Numerical method . 260

F.3 Problem description . 261

x Contents

F.3.1 Tandem cylinders . 261

F.3.2 Simulated conditions . 262

F.3.3 Grid generation . 263

F.4 Results . 264

F.4.1 Pressure coefficients . 265

F.4.2 Velocity profiles . 269

F.4.3 Turbulent kinetic energy profiles 271

F.4.4 Temporal evolution of the lift and drag coefficients . . . 272

F.4.5 Friction coefficient . 273

F.4.6 Power spectral density 276

F.4.7 Mean flow streamlines 276

F.4.8 Mean flow vorticity and turbulent viscosity 277

F.5 Computational resources . 279

F.6 Conclusions . 280

Chapter 1

Introduction

Nowadays, the usage of numerical simulation has become standard in the do-

mains of industrial research and design processes. The evolution and the in-

creasingly widespread application of these techniques are mostly related to the

very rapid development of computing technology, from the hardware and the

software point of view.

Computer simulation applications range across numerous fields that require

an accurate prediction and quantification of complex physical phenomena; these

include fluid dynamics, chemical processes, quantum mechanics, solid mechan-

ics, etc. In many cases, simulation can be considered as a valuable alternative

to the costly development of prototypes (e.g. predicting the aerodynamic per-

formance of a wind turbine by studying experimentally the flow past a small

scale replica of the original model inside a wind tunnel). Besides, sometimes, it

is the only way to gain some insight into physical phenomena that are otherwise

not observable with experimental studies.

Furthermore, simulation is not limited to the domain of engineering, as one

may find applications in biology, astrophysics, economics, geology, climatol-

ogy, movie industry, game industry, etc. One common example is the weather

forecast, which relies on very complex physical modeling.

The need for energy efficiency, the ever higher quality standards (in terms of

comfort, design, etc.) and the increasing security requirements drive a demand

for high-fidelity simulations that are able to accurately predict the behavior of

physical systems. Yet, this accuracy requirement goes along with a considerable

increase of computational needs.

2 Chapter 1. Introduction

In response to this request, new computational architectures have been

developed in order to allow parallel computations on multiple processors. This

has significantly extended the range of applications and has further led to the

emergence of new specifically dedicated research fields, such as computational

science and high-performance computing (HPC). Both domains are intrinsically

multi disciplinary, as they make the link between physics, computer science,

algorithmics and numerical analysis.

As an example of the extent of such computations, state-of-the-art simula-

tions currently run simultaneously on hundreds of thousands cores, sometimes

during several months. It is thus not difficult to realize that the associated

computational cost, in terms of money and time, becomes more and more crit-

ical.

The above observations are particularly true for computational fluid dy-

namics (CFD). In fluid mechanics, any flow configuration can be characterized

by the associated Reynolds number Re, defined as the ratio between the iner-

tial forces and the viscous forces. The higher the Reynolds number, the more

turbulent the flow becomes and the tinier the smallest flow structures/scales

get. Hence, simulating a high Reynolds number flow requires more computa-

tional resources than a low Reynolds number flow, as the former contains more

information.

It can be shown that the computational complexity for the simulation of

an unbounded flow scales like Re3, when all scales in time and space are cap-

tured (i.e. DNS, direct numerical simulation). The highest Reynolds number

currently achievable by a time and space resolving simulation is of the order of

104 − 105. Considering that industrial flows typically encountered in the do-

main of aerodynamics are characterized by Re ≃ 107 − 108 (e.g. the flow past

an airplane), one can get an impression of the extent of the gap that remains

to be bridged.

As a consequence, great efforts are made in order to improve the computa-

tional cost of currently available simulation techniques.

On the one hand, relying on turbulence modeling approaches such as RANS

(Reynolds-Averaged Navier-Stokes), LES (large eddy simulation) or hybrid

RANS/LES methods, allows further reducing the computational cost by trun-

cating the range of scales that need to be captured. The choice of the turbulence

modeling approach requires a trade-off between accuracy and the related cost.

3

On the other hand, another approach consists in developing simulation tools

that are more specific, in the sense that they focus on very precise applications.

This allows adapting the tool to the situation that is studied, by exploiting its

specificities, and hence optimizing the related computational performance.

The present work considers the second approach and focuses on the frame-

work of external incompressible aerodynamics. The simulation methodology

is based on vortex methods, which are particularly well-suited for this type

of flow, thanks to their numerical properties. As an example, accounting for

an unbounded flow domain is handled quite naturally, compared to other ap-

proaches. Vortex methods are Lagrangian methods using a set of particles

that are transported by the flow. These particles carry information about the

vorticity (i.e. a measure of the local flow rotation speed), based on which the

entire flow field can be reconstructed. In 1931, Rosenhead [108] was the first

to use what is now known as a vortex method, while in the absence of any

computing facility, he performed the computations by hand...

Vortex methods have evolved a lot since then, as many research efforts have

been made in order to improve the efficiency and the versatility of the approach.

Applications include aircraft wakes [131], bluff body flows [103, 38], wind tur-

bine wakes [4], reactive flows [124], biological flows [19], biolocomotion [50],etc.

As for any incompressible flow solver, the main challenge consists in effi-

ciently solving the underlying Poisson equation, as it represents the most ex-

pensive computational operation. A major turning point, which made the ap-

proach computationally attractive was the use of fast multipole methods [55, 6].

In this way, the number of operations required for solving Poisson equation was

reduced from O(N2) to O(N log N) or even to O(N) (depending on the algo-

rithm), where N is the number of particles.

Among other things, different techniques from the better known Eulerian

methods have also been integrated and have led to the vortex particle-mesh

(VPM) methods [23], combining the particle information with an underlying

grid. The main advantage related to this development is that it offers the

possibility to rely on even faster grid solvers for the Poisson equation [121,

49], compared to multipole methods. The combination of a grid solver and

multipole methods further improves the efficiency, as was shown in [28].

In parallel, the presence of solid bodies inside the flow domain has been

accounted for by using different techniques ranging from vorticity flux- and

panel-based approaches [72, 102] to penalization methods [32, 109, 50]. Penal-

4 Chapter 1. Introduction

ization methods are very easy to implement but they lack accuracy near the

wall, as the force regularization tends to smear the solution in the vicinity of the

boundaries. Panel-based methods achieve a higher precision, as they provide a

sharper treatment of the wall by relying on a boundary element method.

Yet, the application of previous approaches is limited to moderate Reynolds

number flows. Indeed, in the framework of wall-bounded flows, vortex meth-

ods are computationally penalized with respect to unstructured Eulerian ap-

proaches when the Reynolds number increases, as the latter offer more flexibil-

ity in the near-wall treatment by using body-fitted meshes. This naturally sug-

gests combining both methodologies into a hybrid Eulerian-Lagrangian solver.

The near-wall flow is then accurately captured using the Eulerian solver and

the solution elsewhere in the domain is provided by the Lagrangian solver, as

vortex methods are designed to efficiently compute unbounded flows. The idea

has been around for a long time now and it has been successfully applied to

2-D flows [98, 40].

The starting point for this thesis consists in generalizing the above hybrid

approach to 3-D flows, as explained in the following:

• Chapter 2 describes the development of a 3-D hybrid Eulerian-

Lagrangian solver based on the vortex particle-mesh method developed

in Cocle [28] and Lonfils [83], and on an unstructured finite volume solver

from the OpenFOAM software library [1, 128]. First, a more extensive

introduction to vortex particle mesh-methods is given, as it lays the basis

for the remainder of this work, and secondly, the coupling approach is de-

scribed. It is performed by using the overlapping domain technique from

Daeninck [40]. As a consequence, the vortex method component of the

hybrid approach must compute the solution in the entire flow domain, i.e.

it also needs to (roughly) estimate the near-wall flow (using among other

things a vortex panel method). The representation of the flow in that

region is subsequently refined using the Eulerian solver, somewhat like a

near-wall corrector step that would succeed the Lagrangian solver-based

predictor step. The methodology is then illustrated on the flow past a

sphere at Re = 300.

The application of the hybrid approach onto the above test case reveals the

presence of spurious high-frequency oscillations in the drag coefficient, though.

The questions about the exact reason for this behavior, as well as about its

origin, remain unanswered at the time of writing. Yet, some observations

5

made in Lonfils [83] about the stand-alone VPM solver hint at a consistency

problem between the vortex panel solver and the grid-based Poisson solver.

This assertion is further supported by the analysis made in Chapter 2, about

the drag induced by the vortex panels in the case of the hybrid approach: it can

be observed that the panel-induced drag presents an oscillation pattern similar

to that of the total drag signal. Even if these observations do not prove that

the aforementioned inconsistency is at the root of the problem, they do indicate

that the current treatment of solid walls in VPM methods, using vortex panels,

is perfectible.

Considering the difficulties experienced while trying to remedy the spurious

behavior of the Eulerian-Lagrangian solver, the choice has been made in this

work to address the consistency issue by focusing on the way to account for

solid walls in VPM methods, as will be detailed hereafter. However, it is not

clear yet whether or not the suggested procedure would significantly improve

the results of the hybrid methodology, as this remains to be verified.

In the light of previous discussion, a novel approach for the treatment of

the wall in VPM methods is hence developed throughout this thesis, by using

an immersed interface technique initially introduced by Leveque & Li [77]. The

rationale for this approach is based on the observation that all spatial differ-

ential operations can be performed consistently on the grid by using similar

stencil corrections accounting for the presence of the wall.

Basically, the finite difference schemes used for the Poisson equation and

the discretization of the diffusion term are corrected when their stencil crosses

the boundary. The associated corrections then allow maintaining the same

accuracy at the wall as inside the volume. The possible discontinuities of the

field (and of its spatial derivatives) are taken into account in a “sharp” and

furthermore consistent manner, as all operations are performed on the grid

by following the same philosophy. One of the features of the present approach

resides in the fact that the corrections are purely “one-dimensional”, as they are

computed at the intersections of the grid lines with the interface. This allows

performing the corrections independently of each other, one spatial direction

at a time.

The challenge of this work consists in developing the numerical tools that are

required for an immersed interface-enabled VPM solver. Therefore, all different

operations of classical VPM methods are revisited and finally replaced by their

immersed interface counterpart. The main ingredients are the Poisson solver,

the computation of the diffusion term and the particle-mesh interpolation.

6 Chapter 1. Introduction

With the view of developing a novel technique to account for solid walls

inside VPM methods, the present developments are made in two dimensions

and serve as a proof of concept. The outline for the rest of this thesis is as

follows:

• Chapter 3 is essentially introductory for the following chapters and it

serves two purposes. First, the vortex particle-mesh method is presented

in 2-D, along with a detailed description of the different computational

steps it requires. Second, the no-slip enforcement techniques in vortex

methods are briefly reviewed. More specifically, the classical vorticity

flux-based approach inspired from Lighthill’s model [79] is thoroughly

depicted, as this technique is later used in the immersed interface frame-

work. This technique is unfortunately only first order accurate in time.

Hence, by keeping the momentum of increasing the overall accuracy of

VPM methods, some suggestions are made with a view to forthcoming

work that will aim at improving the temporal accuracy of the no-slip

enforcement procedure. The presented analysis shall be considered as an

effort suggesting some tracks for future investigations.

In order to keep the problem geometry simple, the numerical test case

adopted for the assessment of the convergence rate consists of a dipole

flow inside a cavity. This allows bypassing the errors due to arbitrary

intersections between the wall and the grid, as would be introduced by

immersed interface methods, and one may thus focus on the no-slip con-

dition alone. As a consequence, this benchmark may also be considered

as a “sand box” problem for the validation of future developments.

• Chapter 4 presents a 2-D Poisson solver for the computation in an

unbounded domain of a velocity field that satisfies a no-through flow

condition at solid walls. This tool is intended to replace the panel-based

Poisson solver from [83], as it provides a more consistent treatment of

the walls. It is based on corrected finite differences, along the lines of the

immersed interface approach that was introduced in [77]. The unbounded

character of the solution is obtained by an iteration inspired from the

James-Lackner algorithm [62, 74]. The approach is validated through

grid convergence studies on the potential flow past one or multiple bodies,

by either prescribing the circulation around the body or by enforcing the

Kutta-Joukowsky condition (for airfoils). This chapter further introduces

7

the tools required in the following chapters for the development of an

immersed interface vortex particle-mesh method.

• Chapter 5 provides a numerical framework in order to compute the so-

lution of the parabolic heat equation with a flux condition at the wall.

Enforcing a Neumann condition is not straightforward, since the chosen

immersed interface approach relies on one-dimensional stencil corrections

along the grid lines, while the Neumann condition is intrinsically 2-D. A

“compatible extrapolation scheme” accounting for the flux is presented.

The stability of the discretization is studied, as well as the spatial accu-

racy of the scheme.

• Chapter 6 focuses on the interpolation that is required between the par-

ticles and the grid. One distinguishes here the mesh-to-particle (M2P) in-

terpolation and the particle-to-mesh interpolation (P2M). Basically, both

approaches rely on high order interpolation kernels, conforming to what

is classically done in VPM methods. Again, the main challenge consists

in preserving the accuracy of the interpolation in the presence of the wall,

similarly to the two previous chapters. The M2P interpolation requires

the computation of grid ghost values and the P2M interpolation intro-

duces ghost particles, whose intensity is obtained by a level set extension

technique. The spatial accuracy is also studied.

• Chapter 7 finally combines the tools from previous chapters into an im-

mersed interface vortex particle-mesh solver. All spatial differential oper-

ations are consistently performed on the grid, whereas the time evolution

of the particles and their displacement are computed in a Lagrangian

fashion. The methodology is validated on the impulsively started flow

past a cylinder at Re = 550 and Re = 3000 and the results are compared

to references in the literature. The ability of the solver to handle sharp

bodies, such as an airfoil, is further demonstrated by studying the flow

past a NACA0021 airfoil at Re = 500. The vortex shedding formation

for a cylinder at Re = 100 is also examined using the present approach.

• Chapter 8 studies the numerical dispersion and dissipation errors that

are introduced by the redistribution of the particles, in the 1-D case.

Indeed, contrary to purely Lagrangian methods that enjoy negligible nu-

merical dispersion and dissipation errors, the VPM methods become more

8 Chapter 1. Introduction

and more similar to classical grid methods, at least in terms of their nu-

merical properties. In that sense, a thorough analysis of the effect of the

interpolation scheme and of the redistribution frequency onto these errors

is performed.

Some additional tools concerning the immersed interface techniques and the

study of the numerical errors are provided in the appendices of this document.

Furthermore, Appendix F reproduces a conference paper [86] that was written

in the framework of the AIAA BANC-I workshop in Stockholm, 2010. The

flow past two cylinders in tandem configuration is studied at Re = 1.6 · 105,

using an unstructured finite volume solver [53] and the delayed detached eddy

simulation (DDES) approach from [117].

Chapter 2

Coupling a vortex

particle-mesh method with

a near-wall finite volume

solver

Lesser-known than the widely-used finite volume (FV) methods in the computa-

tional fluid dynamics (CFD) community, vortex particle-mesh (VPM) methods

are a subset of the so-called vortex methods. This type of method offers a valu-

able alternative to classical numerical approaches, especially for computational

aerodynamics. The term “vortex methods” refers to a class of Lagrangian

methods relying on a set of particles in order to compute the entire flow field.

An overview of vortex methods is provided in Cottet & Koumoutsakos [34] and

Winckelmans [132].

As will be explained in this chapter, providing a more accurate represen-

tation of the flow in the vicinity of solid walls using an auxiliary solver is the

logical continuation in the development of vortex methods, especially at high

Reynolds numbers.

Vortex methods are characterized by several features (low numerical dis-

persion and dissipation errors, a relaxed CFL stability condition) that are par-

ticularly interesting for the simulation of high Reynolds number unbounded

vortical flows, such as wakes or jets. Yet, they suffer from one clear disadvan-

10 Chapter 2. Coupling a VPM method with a near-wall FV solver

tage when solid walls are accounted for and that disadvantage is related to the

nature of the near-wall flow and to that captured by the particles. Particles

are inherently spatially isotropic in the sense that their dimension is identical

in all directions. On the contrary, the near-wall flow, i.e. the boundary layer,

is intrinsically anisotropic, as the velocity gradients in the direction perpendic-

ular to the wall predominate. The higher the Reynolds number, the tighter the

boundary layer and hence the more the anisotropy prevails.

Unstructured Eulerian methods, such as finite volume methods, typically

use body-fitted meshes consisting of computational elements near the wall that

are stretched in the directions parallel to the wall, which provides a natural

treatment for the flow anisotropy. The boundary layer is hence more efficiently

captured than it is by a vortex method that would require using a huge amount

of particles near the wall so as to yield the same precision as a body-fitted

approach. It can be shown, for wall-bounded flows, that the ratio between the

number of points required when using a non-conforming grid (e.g. for immersed

boundary/interface methods) and when using a body-fitted mesh scales like

Re1.0 in 2-D and like Re1.5 in 3-D [92]. This shows that, for an increasing

Reynolds number, using a body-fitted mesh becomes computationally far more

interesting, from the standpoint of the number of unknowns.

Realizing that both approaches have complementary strengths in distinct

parts of the flow domain naturally leads to the concept of a hybrid Eulerian-

Lagrangian solver, where the near-wall flow is computed using an Eulerian

method such as finite volumes, whereas the wake is simulated using a vortex

method. A few successful achievements are reported in the vortex method

literature about this type of coupling. The Eulerian solver must not necessar-

ily be a finite volume solver: using any body-fitted approach is suitable, e.g.

finite difference methods, finite elements, discontinuous Galerkin methods, ...

Ould-Salihi et al. [98] used an overlapping domain technique based on finite dif-

ferences and a Schwarz iteration in order to simulate 2-D flows. Daeninck [40]

used a similar 2-D approach, yet one that does not require any Schwarz itera-

tion. Based on the latter, Lonfils [83] made the first attempt in 3-D, using a

compressible finite volume near-wall solver. Yet, the developed approach was

not fully operational and validation was hence not carried out.

Following Lonfils [83], the present developments focus on coupling a 3-D

VPM method to an incompressible finite volume solver from the OpenFoam [1,

128] software library. Sections 2.1 and 2.2 briefly present the two underlying

2.1. Vortex-particle mesh solver 11

solvers. The coupling algorithm is presented in Section 2.3, and some results

are shown thereafter in Section 2.4. As will be seen, these results suggest the

need for further developments, as the global flow diagnostics (i.e. the forces)

exhibit strong oscillations in time. Finally, some conclusions are presented in

Section 2.5.

2.1 Vortex-particle mesh solver

One of the main motivations for vortex methods stems from the observation

that the vorticity field ω = ∇× u typically has a much smaller support com-

pared to the velocity field u, which makes the choice of using the vorticity

as a primary variable particularly interesting, from a computational point of

view. Indeed, the flow past solid bodies, as encountered in the framework of

external aerodynamics, induces a non-zero vorticity that is confined inside the

boundary layers and the wakes downstream of the bodies. On the contrary,

the velocity significantly differs from the uniform upstream flow, even very far

from the bodies, as can be observed for a simple potential flow.

Vortex methods are based on the vorticity-velocity formulation of the Navier-

Stokes equations for incompressible flows (∇ · u = 0)

Dω

Dt
= (∇u) · ω + ν∇2

ω , (2.1)

where D/Dt ∆= ∂/∂t + u · ∇ is the material derivative and ν is the kinematic

viscosity. The outer boundary condition in an unbounded domain is typically

a uniform upstream velocity field, it is given by u = U∞ when |x| → ∞.

Thanks to the incompressibility and to the resulting Helmholtz decomposition

u = ∇ ×Ψ + U∞, the velocity can be computed from the streamfunction Ψ

by solving the following Poisson equation

∇2Ψ = −ω , (2.2)

as Ψ is chosen according to Lorenz gauge (∇ ·Ψ = 0).

The spatial discretization is performed by using N particles of position xp(t)

and carrying a vorticity intensity αp(t)
∆=
∫
Ωp

ω dx ≃ ωpVp, where ωp(t) is the

particle vorticity, Ωp(t) its domain and Vp its volume. According to [132],

the time evolution of these particles is prescribed by the following ordinary

12 Chapter 2. Coupling a VPM method with a near-wall FV solver

differential equations resulting from the Navier-Stokes Eq. (2.1)

dxp

dt
= up (2.3)

dωp

dt
= (∇u)p · ωp + ν

(
∇2

ω
)
p

,

where up = u(xp) is the particle velocity (more generally, fp(t)
∆= f(xp(t), t)

with f(x, t) the Eulerian representation of a field f).

Purely Lagrangian methods make use of fast summation techniques based

on multipole expansions of the free space Green’s function [55, 56, 6, 111] in or-

der to solve Eq. (2.2) and hence compute the velocity at each particle (and also

the associated stretching term (∇u)p · ωp). As a consequence, this procedure

implicitly considers an unbounded domain for the Poisson solution. In these

methods, particle strength exchange schemes [41] or random-walk methods can

be used for the computation of the diffusion term.

Despite the significant reduction of the computational cost achieved by

parallel fast multipole (PFM) methods [111] (O(N) or O(N log N) compared to

O(N2) operations required by a direct evaluation of Biot-Savart’s law, with N

the number of particles), the evaluation of the velocity remains quite expensive

when N grows very large.

In response to this, vortex particle-mesh (VPM) methods, also called Vortex-

in-cell (VIC) in the literature, were introduced by Christiansen [23]. VPM

methods essentially differ from classical Lagrangian vortex particle (VP) ap-

proaches by their numerical treatment of the spatial differential operators, i.e.

the evaluation of the right hand side in Eq. (2.3). They are based on a combi-

nation of particles and an underlying grid, and therefore provide access to the

numerously available grid-based Poisson solvers, which surpass purely PFM

methods in terms of computational efficiency.

The present VPM solver has been initially developed by Cocle [28, 27]

and was further improved by Lonfils [83] so as to account for solid bodies

and to provide a multi resolution framework. The boundary condition for

Eq. (2.2), on the outer boundary of the computational domain, as well as on

the inner boundaries separating the subdomains of the parallel computation,

are evaluated using a PFM method. The solution is then obtained in the entire

computational domain using Fishpack [121, 122, 120], a fast finite difference

Poisson solver based on cyclic reduction. The diffusion and the stretching terms

are also both computed on the grid, using finite differences.

2.2. Finite volume solver 13

As in any Lagrangian method, the advected particles need to be frequently

reinitialized in order to prevent clustering and depletion of the particles that is

induced by local velocity gradients. It consists in replacing the distorted set of

particles, after a few time steps, by new particles placed at the node positions

of an underlying grid. The operation is called “redistribution” or “remeshing”

and it helps maintaining an accurate representation of the vorticity field [71].

The high order kernel M ′
4 from [93] is used for both the redistribution and the

particle-mesh interpolation operations. More details about the interpolation

procedure (and the associated kernel) are provided in Chapter 6.

A second order time integration is performed, i.e. Adams-Bashforth for the

diffusion and Leap-Frog for the displacement, or a Runge-Kutta (RK) scheme

for both equations when the particles have been freshly redistributed.

The presence of the body is accounted for using an immersed boundary

method. First, a vortex sheet is computed using a vortex panel method [58]

(i.e. a boundary element method) so as to cancel the through flow velocity.

Based on that, a vorticity flux is computed at the wall and the associated near-

wall diffusion process is used to model the required no-slip condition for the

velocity. The near-wall diffusion is performed by means of integral formulas

developed in [103]. The origin of this model, and its application to 2-D flows,

are further discussed in Chapter 3.

One of the issues encountered in 3-D vortex methods concerns the diver-

gence of the vorticity field. Vorticity is solenoidal (∇ · ω = 0), as ω = ∇× u.

Yet, the absolute value of the vorticity divergence may grow in time during the

simulation and a regular reprojection of ω is required.

Performing simulations on hierarchically refined grids is allowed using a

multi resolution technique inspired from Bergdorf et al. [9, 10], which is based

on average-interpolating wavelets [123].

2.2 Finite volume solver

An unstructured incompressible solver from the OpenFOAM open-source soft-

ware library [1, 128] is used here. The Navier-Stokes equations are solved in

the velocity-pressure formulation

Du

Dt
= −∇P + ν∇2u (2.4)

∇ · u = 0 ,

14 Chapter 2. Coupling a VPM method with a near-wall FV solver

where P ∆= p/ρ is the reduced pressure, with p the pressure and ρ the density.

The spatial discretization is performed using a cell-centered finite-volume ap-

proach and the PISO algorithm [61] is adopted in order to couple the velocity

and the pressure at the time step level. The time integration is carried out

using the implicit second order three-point backward differencing scheme

(
∂U

∂t

)n+1

=
3Un+1 − 4Un + Un−1

2∆t
+O(∆t2) ,

where (·)n indicates the evaluation of the function at the time tn ∆= tn−1 + ∆t

(∆t is the time step). For the present calculations, a second order centered

convection scheme is chosen. The velocity and the pressure equations are solved

using respectively a preconditioned biconjugate gradient solver and a geometric-

algebraic multigrid solver.

2.3 Hybrid FV-VPM solver

Vortex methods are particularly well-suited for the study of free vortical flows,

thanks to the low numerical dissipation and dispersion errors, when the redis-

tribution frequency is not too high (see Chapter 8). Thanks to the evaluation

of the Poisson boundary condition using the PFM method, the VPM approach

implicitly accounts for an unbounded domain and a compact computational

domain tightly encompassing the vorticity support can be used.

Another feature of vortex methods is the absence of a CFL-like stability

constraint (Courant-Friedrichs-Lewy condition) associated to the advection,

as opposed to explicit Eulerian approaches. A Lagrangian condition must be

satisfied by the time step ∆t, though. The latter is based on the local strain

of the flow and on the rotation of the particles with respect to each other

‖S‖∆t < C1 and ‖ω‖∆t < C2 ,

where S ∆= 1
2 (∇u + (∇u)T) is the strain rate tensor, C1 = 0.2, . . . , 0.25 and

C2 = 0.2, . . . , 0.25, typically. Most of the time, this is less restrictive than a

classical CFL condition and, strictly speaking, it does not represent a stability

criterion but rather expresses a condition so as to prevent particle collision and

hence ensure the accuracy of the particle-mesh interpolation.

2.3. Hybrid FV-VPM solver 15

Yet, accounting for bodies remains challenging, and properly capturing the

boundary layers, especially at high Reynolds number, is computationally costly,

as previously mentioned.

In a complementary fashion, body-fitted Eulerian methods provide a natu-

ral and efficient treatment for arbitrary solid walls, by allowing to work with

anisotropic meshes in the vicinity of the walls. However, approaching the so-

lution in an unbounded domain generally requires using a large computational

domain.

Henceforth, the domain-based problem decomposition shown in Fig. 2.1

clearly benefits from the complementary strengths of both approaches: the

near-wall flow is accurately captured by the finite volume solver, whereas the

wake computation is performed by the vortex particle-mesh method.

U∞

Eulerian solver

Near-wall flow

Lagrangian solver

Wake

Figure 2.1: Sketch of the different flow regions for a typical bluff-body flow.

The present coupling approach is inspired from Daeninck [40] and, it is

based on an overlapping domain technique. As shown in Fig. 2.2, this way

of proceeding implies that the VPM solver actually computes the solution in

the whole domain, i.e. up to the wall (the computational domain for the VPM

solver is called ΩVPM here, its outer boundary is ∂ΩVPM and the body boundary

is described by ∂Ωb). Yet, the solution is intentionally under resolved near the

wall. Thanks to the panel solver, which has a global view of the flow, the

correct amount of vorticity is still provided at the body boundary, despite the

poorly captured near-wall physics. At a certain distance from the wall, and

hence far from the attached boundary layers, the VPM solution is assumed to

remain accurate, by means of the global character of the panel solver.

As a consequence, the VPM solution may serve as an outer boundary con-

dition for the finite-volume solver, without requiring any Schwarz iteration in

16 Chapter 2. Coupling a VPM method with a near-wall FV solver

order to match the VPM and FV solutions at the outer boundary ∂ΩFV of the

FV computational domain ΩFV. From the near-wall point of view, the VPM

solver corresponds to a predictor and the FV solver plays the corrector role, in

the sense that it subsequently recomputes the solution in ΩFV so as to refine

and improve the near-wall VPM vorticity in the correction domain Ωc
FV ⊂ ΩFV

(see Fig. 2.2).

By pushing this idea even further, one could equivalently consider the VPM

solver as a means to provide an outer boundary condition for the Eulerian solver

that is consistent with the far-field condition, even for a larger domain ΩFV,

i.e. a domain that is not limited to the near-wall region.

ΩVPM
∂ΩVPM

ΩFV

Ωc
FV

∂ΩFV

∂Ωb

Figure 2.2: Sketch of the decomposition using overlapping domains for the hybrid
Eulerian-Lagrangian FV-VPM solver.

Let us assume that, at the time tn, the FV solution un and Pn is known in

ΩFV and the VPM particle vorticity ω
n
p is available in ΩVPM. The sequence of

operations to compute the solution at the time tn+1 reads

1. Perform the explicit VPM computation and obtain ω
n+1
p in ΩVPM\Ωc

FV

and ω
n+1,∗
p in Ωc

FV.

2. Compute the boundary condition un+1 and (∂P/∂n)n+1 on ∂ΩFV for the

FV solver (∂/∂n is the derivative in the direction normal to ∂ΩFV).

3. Perform the implicit FV computation and obtain un+1 and Pn+1 in ΩFV.

The FV solution is retained as the proper solution in Ωc
FV.

4. Correct the VPM near-wall vorticity by replacing ω
n+1,∗
p by ω

n+1
p =

(∇× u)n+1
p in Ωc

FV.

2.3. Hybrid FV-VPM solver 17

As a consequence, both solvers communicate only twice per time step, since

data is exchanged between the VPM subdomains and the FV partitions only

at the coupling steps 2 (surface fields) and 4 (volume field).

Apart from the situation where the particles have just been redistributed,

the coupling is second order accurate in time. The coupling is first order

accurate in time for the time step following the redistribution, as no information

is exchanged during the VPM RK2 predictor computation (remedying this

shortcoming is not trivial, since the time integrators used for the VPM and FV

solvers are different). For the other time steps, one VPM vorticity correction

at the end of the time step is sufficient to ensure the accuracy, since only one

right hand side evaluation is performed by the multi step time integrators.

One should notice that, contrary to appearances, the pressure must not

be evaluated by the VPM solver in step 2. A projection of the Navier-Stokes

Eq. (2.4) in velocity-pressure formulation onto the normal n yields the desired

quantity on ∂ΩFV, according to [40]

∂P

∂n
= n ·

(
ν∇2u− ∂u

∂t
− u · ∇u

)
,

where all terms are computed using second order finite differences. The results

un+1 and (∂P/∂n)n+1 are then interpolated linearly onto the finite volume cell

face centers. However, due the inconsistent discretizations between FV and

VPM, and due to the interpolation, an error subsists on the incompressibility

of un+1 and for the Neumann boundary condition compatibility equation of the

pressure Poisson equation resulting from the PISO algorithm (which is similar

to the pressure equation from classical projection methods [69])

∇ · (β∇P) = ∇ · u∗ ,

where u∗ is an intermediate velocity field and β are numerical discretization

coefficients related to the PISO algorithm (i.e. for the discretization of the

convection term). A uniform correction is hence applied for the boundary

conditions on ∂ΩFV

un+1 ← un+1 − n

SFV

∫

∂ΩFV

un+1 · n dx

(
∂P

∂n

)n+1

←
(

∂P

∂n

)n+1

−
∫

∂ΩFV
β
(

∂P
∂n

)n+1
dx

∫
∂ΩFV

β dx
,

where SFV =
∫

∂ΩFV
1 dx and since we impose that ∂P/∂n = 0 on ∂Ωb.

18 Chapter 2. Coupling a VPM method with a near-wall FV solver

The cell-averaged finite volume vorticity is computed as ωe = (1/Ve)
∑

f nf

×uf Sf , where Ve is the cell volume, the subscript e refers to the cell and f to

one of its faces (Sf is the face area and nf the related normal vector). A linear

reconstruction of the vorticity is performed by computing the vorticity gradient

based on the neighboring cell vorticity. The correction for the particles inside

Ωc
FV is computed as αp/h3 based on the reconstructed FV field and using

a Gauss quadrature over the particles that are considered as cubes of side

length h. The approach is thus not fully conservative, yet the interpolated field

appears to be consistent and smooth across ∂ΩFV.

As an alternative, one could also imagine considering the finite volume

cells equivalently as particles and thus redistributing the associated vorticity

intensity ωeVe to the nearest VPM particle. This would ensure the conservation

but it would lead to a less smooth VPM vorticity field, which could affect

the accuracy of the finite difference evaluation of the diffusion and stretching

terms. Another conservative approach would require computing explicitly the

intersections between the particles and the FV mesh [48, 47], but this would

come at a very high cost, yet without significantly improving the methodology.

2.4 Results

The test case consists in simulating the flow past a sphere at Re = U∞D/ν =

300, where D is the sphere diameter and U∞ is the uniform upstream veloc-

ity field. First, a preliminary study compares the results obtained using the

two solvers individually and secondly, some results are shown for the hybrid

approach.

The simulation using the OpenFOAM finite volume solver was performed

using the surface mesh shown in Fig. 2.3, extruded up to r = 10D (650K nodes

and 1.3M cells). The first cells at the wall have a mesh size ∆ywall/D ≃ 0.004 in

the direction perpendicular to the wall and ∆xwall ≃ 5∆ywall in both directions

parallel to the wall. The surface mesh is extruded using a geometric progression

of common ratio 1.1. The boundary conditions are given by u = U∞ and

∂P/∂n = 0 on the outer upstream half sphere, by ∂u/∂n = 0 and P = 0 on

the outer downstream half sphere and by u = 0 and ∂P/∂n = 0 on the wall.

The time step is U∞∆t/D = 1 · 10−2.

2.4. Results 19

Figure 2.3: Prismatic mesh used for the OpenFOAM finite volume computation
(it has been obtained as an extruded surface mesh from a cube projected onto a sphere).

The results for the vortex particle-mesh simulation are reported from Lon-

fils [83]. A multi resolution technique was used with a near-wall mesh size

h/D = 1/75 = 0.0133, and the domain extended up to 38D downstream of the

sphere, which amounts to a total of approximately 1.1 · 107 grid points. The

time step was U∞∆t/D = 8.5 · 10−3 and a particle redistribution was carried

out every 5 time steps. Fig. 2.4 is reproduced from [83] and shows the near-wall

flow, along with the hierarchically refined grid.

Table 2.1 compares the FV solver and the VPM solver results, together

with some reference results from the literature, in terms of the lift coefficient

CL, the drag coefficient CD and the Strouhal number St, defined by

CD
∆=

F · v̂
1
2ρU2∞πR2

CL
∆=
‖F− F · v̂‖
1
2ρU2∞πR2

St ∆=
fD

U∞
,

where F is the force exerted by the flow on the sphere, v̂ is the upstream flow

direction (U∞ = U∞v̂), f is the frequency associated to the mode with the

highest amplitude of the lift fluctuation and R = D/2 is the sphere radius.

Results show an excellent agreement between the FV solver and the VPM

solver, which further supports the intention to couple both approaches.

Concerning now the hybrid Eulerian-Lagrangian approach, the domain ΩFV

extends up to r = 2.44R and the associated mesh consists of 390K nodes and

810K cells. The surface mesh is the same as that shown in Fig. 2.3; the first cells

at the wall have a mesh size ∆ywall ≃ 0.002D in the direction perpendicular

20 Chapter 2. Coupling a VPM method with a near-wall FV solver

Figure 2.4: Flow past a sphere at Re = 300 using the multi resolution VPM solver

from Lonfils [83]: the vorticity measure sign(ωz) log
“

1 + D
U∞

|ωz|
”

is shown here,

along with the underlying grid; the figure is reproduced from Lonfils [83].

CD CL St

Present FV 0.666 0.070 0.136

Lonfils VPM [83] 0.677 0.070 0.134

Ploumhans et al. [103] 0.683 0.061 0.135

Georges [52] 0.661 0.066 0.134

Johnson & Patel [64] 0.656 0.069 0.137

Constantinescu et al. [31] 0.655 0.065 0.136

Table 2.1: Time averaged drag, time averaged lift and Strouhal number for the flow
past a sphere at Re = 300; comparison between the FV solver, the VPM solver and
other reference results from the literature.

to the wall and ∆xwall ≃ 10∆ywall in both directions parallel to the wall. The

correction zone Ωc
FV is defined by R ≤ r ≤ 1.6R.

In the present case, a uniform grid is used for the VPM solver with again

h/D = 1/75 = 0.0133 and the domain ΩVPM extends up to 20D downstream

of the sphere with an outflow condition at the outflow plane corresponding to

a “through flow plane” or “dominating drag condition” (odd symmetry for the

normal component of ω across the outflow plane and even symmetry for the

components tangent to the outflow plane, see [28]). A comparison between the

2.4. Results 21

FV mesh and the VPM grid is shown in Fig. 2.5. It further shows that the

Lagrangian grid is clearly less adapted to capture the near-wall flow, compared

to the FV mesh.

The time step is given by U∞∆t/D = 5 · 10−3 and redistribution in the

VPM solver is done every 4 time steps.

ΩVPM

ΩFVΩc
FV

Figure 2.5: Meshes used for the hybrid Eulerian-Lagrangian computation : near-wall
comparison between the VPM grid and the FV prismatic mesh (only the bottom half
of the FV mesh is displayed here; the diagonal lines of the quadrangles appearing in
the FV mesh are spurious and correspond to a bug inside the visualization software).

Fig. 2.6 shows the iso contours of the vorticity magnitude computed by the

FV solver inside Ωc
FV and the VPM solution inside ΩVPM\Ωc

FV. Despite the

different discretization approaches adopted in both subdomains, the contours

appear to match across the correction domain boundary ∂Ωc
FV, except for some

very small discrepancies.

The near-wall vorticity from the FV and VPM solutions are also compared

in Fig. 2.7. Note that, in the present case, the VPM solution is actually quite

well resolved, as the grid size h is similar to the FV mesh size parallel to the

wall (see Fig. 2.5). Therefore, the correction domain Ωc
FV could be narrower,

considering that inside Ωc
FV the most distant FV cells from the wall are roughly

twice as big as the VPM particles. Nevertheless, the correction provided by

the FV solution helps maintaining a good representation of ω in ΩVPM all

22 Chapter 2. Coupling a VPM method with a near-wall FV solver

the way up to the wall, as it accounts for the large gradient in the direction

perpendicular to the wall, which are not well captured by the VPM approach

(the noise observed in the VPM solution near the wall is partially due to the

graphical interpolation of the solution into the RGB color space). Yet, one

could argue that the particles in the direct vicinity of the wall are not corrected

properly, as the quadrature points for the integration only “see” a limited

fraction of the near-wall FV cells, due to the small size of the cells in the

direction perpendicular to the wall.

ΩVPM

ΩFV Ωc
FV

∂Ωc
FV

Figure 2.6: Iso contours of ‖ω‖D/U∞ (by steps of 1.5) for the flow past a sphere
at U∞t/D = 45 and for Re = 300: Eulerian FV solution in Ωc

FV (green contours),
Lagrangian VPM solution in ΩVPM\Ωc

FV (blue contours) and representation of the
domains ΩVPM, ΩFV and Ωc

FV (∂Ωc
FV is the outer boundary of Ωc

FV).

Fig. 2.8 shows the drag coefficient CD resulting from the application of

the hybrid scheme. It is computed by using two different force evaluation

techniques. The first technique is typically used for VPM methods and it

consists in evaluating the force by computing surface integrals over a control

volume containing the body, according to [96, 97] (the surfaces of the control

volume are thus included in ΩVPM). The second technique requires the FV

2.4. Results 23

ΩVPM

Ωc
FV

y

z

Figure 2.7: Vorticity ωxD/U∞ for the flow past a sphere at U∞t/D = 45 and for
Re = 300: comparison of the near-wall vorticity between the VPM solution in ΩVPM

and the FV solution in Ωc
FV (only the bottom half of Ωc

FV is displayed here).

solution (pressure and friction), as it is based on a simple force integration over

the surface of the body.

One may observe that strong oscillations are exhibited at half of the sam-

pling frequency for the drag evaluated by the second technique, based on the

FV solution. The amplitude is of the order of 5 to 10% of the total drag (2 to

3% for the drag based on the VPM solution). Yet, the average of the drag is

quite in agreement with those of Table 2.1. Note that, a closer look at the VPM

drag signal presented in Lonfils [83] (thus without hybrid scheme) also reveals

some spurious oscillations. Using a near-wall FV solver in the framework of

the hybrid scheme seems to worsen this phenomenon.

The repeated pattern matches the redistribution frequency. Considering

the fact that the boundary layer is nearly steady at this Reynolds number,

the flow does not significantly change between two redistributions. Hence, the

advection of the particles and the subsequent redistribution should not overly

alter the grid representation of the vorticity field near the wall, which however

seems to be the case here, since the drag fluctuates. This observation may

suggest that something goes wrong during the redistribution.

24 Chapter 2. Coupling a VPM method with a near-wall FV solver

30 30.05 30.1 30.15 30.2
0.55

0.6

0.65

0.7

0.75

U∞t/D

CD

Figure 2.8: Drag coefficient obtained for the flow past a sphere at Re = 300 using
the hybrid scheme: drag computed from the FV domain (black curve) and from the
VPM domain (red curve).

While not reported here, some tests were also performed at different redis-

tribution frequencies. The pattern is obviously affected by the redistribution

frequency, yet the amplitude of the oscillation remains similar. One may more-

over argue that using a different time integration schemes just after the redistri-

bution is inconsistent (Runge-Kutta 2 vs. Adams-Bashforth 2 and Leap-Frog).

However, redistributing the particles every time step (and thus using the RK2

time integrator for every time step) does not reduce the amplitude of the drag

signal much.

The oscillatory behavior of the drag may further be related to the linear

impulse associated with the vortex panels used in the VPM solver. This is

measured by computing a “panel-induced drag” defined by

Cpan
D

∆= −
(
v̂ · dI

pan

dt

)
1

1
2ρU2∞πR2

,

where Ipan ∆=
∫

∂Ωb
x×∆γ dx is the linear impulse induced by the vortex panels

of intensity ∆γ. Fig. 2.9 shows the drag for a slightly different computational

setup compared to the previous setting (basically, there is no symmetric outflow

condition and the vortex panels do not diffuse in this case). One may clearly ob-

serve that the drag solution is correlated to the evolution of the panel-induced

2.4. Results 25

drag. This observation suggests a consistency problem in the no-slip enforce-

ment, between the vortex panel method and the finite difference-based VPM

approach (Poisson solver, diffusion term, etc.).

4.8 4.85 4.9 4.95 5
0.55

0.6

0.65

0.7

0.75

0.8

U∞t/D

CD

(a)

4.8 4.85 4.9 4.95 5

−0.1

−0.05

0

0.05

0.1

0.15

U∞t/D

Cpan
D

(b)

Figure 2.9: Drag coefficient obtained for the flow past a sphere at Re = 300 using the
hybrid scheme (numerical setup without symmetric outflow condition and with vortex
panels that do not diffuse): (a) drag computed from the FV domain (black curve) and
from the VPM domain (red curve); (b) panel induced drag that is related to the VPM
approach.

26 Chapter 2. Coupling a VPM method with a near-wall FV solver

Similarly to Fig. 2.8, the oscillation is more important in the FV solution,

when one considers the associated drag evaluation, as can be seen in Fig. 2.9(a).

Indeed, significant pressure variations are generated in the FV solution inside

ΩFV and they represent the major contribution to the drag oscillation com-

pared to the friction (it is not reported here). This further indicates that the

incompressible finite volume solver is quite sensitive to the outer boundary

condition provided by the VPM solver, which does not help matters.

2.5 Conclusion

The results from Lonfils [83] that are reported here show that the immersed

boundary method is well-suited for the simulation of bluff body flows using a

VPM solver. Yet, as was already mentioned in [83], some oscillations occur in

the force diagnostics, especially for the drag coefficient. These oscillations are

not problematic, unless the VPM approach is further coupled to a near-wall

Eulerian solver. According to the present results, the oscillation amplitude

then reaches 5 to 10% of the average drag when the hybrid scheme is used.

Based on the above observations, it is certainly not easy to distinguish the

cause from the consequence for this spurious oscillatory behavior. However,

they hint at a consistency problem existing between the different computational

operations performed inside the VPM approach, i.e. the use of a vortex panel

method in conjunction with a finite difference-based evaluation of the spatial

differential operations.

A further point that may support this assertion consists in observing that

hybrid Eulerian-Lagrangian approaches were successfully developed for purely

Lagrangian vortex methods [98, 40] and for VPM methods using body-fitted

grids in relatively simple computational domains [98]. Accounting for more

complicated body geometries that lead to arbitrary intersections of the body

boundary with the grid may be more problematic when combining a vortex

panel method with classical grid techniques.

More precisely, one may distinguish the following operations contributing

to the inconsistency of the VPM solver:

• Computing a velocity field satisfying a no-through flow condition at the

wall (Poisson solver + vortex panel method).

• Near-wall diffusion of the generated vortex sheet so as to enforce the

no-slip condition at the wall.

2.5. Conclusion 27

• Redistribution of the particles near the wall and particle-mesh interpola-

tion.

Yet, it is a priori not clear if this inconsistency is the reason for the drag

oscillation. Next to this track, some other investigations could maybe overcome

this difficulty, by improving for example the coupling technique and making use

of an extended buffer layer. Another possibility could consist in using a different

near-wall solver, that is perhaps less sensitive to the outer boundary condition.

The present work however focuses on the first track and lies the basis for

searching for a more consistent approach, relying on immersed interface tech-

niques [77] in order to perform all the aforementioned operations on the grid.

The finite difference schemes are modified so as to account for the presence of

the body and the spatial accuracy is preserved up to the wall.

The previous combination of the vortex panel method with the standard fi-

nite difference Poisson solver is replaced by a novel approach based on corrected

finite differences. The solution satisfying both the far-field condition and the

no-through flow condition at the body boundary is computed all at once (see

Chapter 4). Moreover, the other operations required by the VPM approach,

such as the diffusion operator with a flux condition at the wall for the no-slip

enforcement (Chapter 5) or the particle-mesh interpolation (Chapter 6), also

account for the presence of the body in a consistent manner.

28 Chapter 2. Coupling a VPM method with a near-wall FV solver

Chapter 3

Enforcing a no-slip

condition in a VPM

method and application to

a vortex dipole in a box

The aim of this chapter is twofold. First, in order to complete our brief intro-

duction of Chapter 2, the vortex particle-mesh approach is here described more

thoroughly. The necessary background for the following chapters is provided

here, by detailing the different computational steps that are required in a 2-D

VPM method. Secondly, the specific aspect of enforcing a no-slip condition at

a solid wall is further discussed and investigated.

As a matter of fact, the simulation of wall-bounded flows using a vortex

method remains challenging and it requires several modifications in the solu-

tion algorithm, compared to the simulation of free vortical flows. The way to

account for solid bodies inside the flow domain has been studied extensively in

the past decades since the pioneering work of Lighthill [79] in 1963.

After the description of the general VPM methodology, this chapter reviews

and quantifies the performance of one specific technique to enforce a no-slip

condition, that was introduced by Koumoutsakos et al. [72] and Cottet [33],

and which is based on a vorticity flux evaluation. The main drawback here

consists in the fact that it does not provide a high order temporal accuracy for

30 Chapter 3. No-slip condition and dipole in a box

the treatment of the associated no-slip condition, as it is intrinsically linked

to a fractional step algorithm. While the present work does not overcome this

issue, an analysis about the splitting of the equations is carried out and some

suggestions are made in order to improve the flux computation. The intent is

here to gather some new ideas so as to possibly inspire future developments.

Studying the performance of the no-slip enforcing procedure calls for a well-

defined (and simple) numerical framework and the present test case (vortex

dipole in a cavity) just fulfills these requirements. The geometrical treatment

of the walls is indeed greatly simplified, as the cavity walls coincide with the

grid boundaries. Hence, the numerical errors due to possibly arbitrary inter-

sections of the body boundary with the grid (that are usually encountered in

immersed interface methods, i.e. the core business of the following chapters)

are avoided. This test case is therefore particularly well-suited for the study

and the validation of different procedures aiming at enforcing a no-slip con-

dition at solid walls in vortex methods. As a consequence, this setup can be

considered as a “sand box” problem for the implementation and the testing of

various numerical techniques related to VPM methods.

First, Section 3.1 describes the chosen test case and, next, Section 3.2 details

the VPM methodology by depicting a solver designed for the computation of

viscous flows with a no-through flow condition at the wall (i.e. an inviscid wall),

which is naturally accounted for in this type of method. Section 3.3 then treats

the less straightforward aspect of enforcing a no-slip condition at the wall and

thus, accordingly, of canceling at every time step the tangential slip velocity

resulting from the solver of Section 3.2. Finally, some results are provided in

Section 3.4 for the vortex dipole flow for the case at Re = 1000.

3.1 Description of the test case

The present test case, consisting of a self-propelling 2-D vortex dipole colliding

with the solid walls of a square cavity, has been initially studied in [26] and

was further formalized and thoroughly documented in [25], for benchmarking

purposes. The underlying rationale is the study of the resulting wall-vortex

interactions and the associated generation of secondary vorticity coming from

the wall. Despite the simple problem geometry, the complex flow physics oc-

curring after the collision makes this test case challenging from a numerical

point of view.

3.2. VPM solver with a no-through flow condition at the wall 31

The initial condition is the combination of two opposite sign vortices, each

of zero total circulation. It reads

ω(x, 0) = ω0(x) = ωe

(
1−

(
r1

r0

)2
)

exp

(
−
(

r1

r0

)2
)

− ωe

(
1−

(
r2

r0

)2
)

exp

(
−
(

r2

r0

)2
)

,

(3.1)

with r1
∆= |x − x1| and r2

∆= |x − x2|. Everything is here dimensionless. The

domain is Ω = [−1, 1]× [−1, 1] and the numerical parameters are

ωe = 299.528385375226

r0 = 0.1

x1 = (0, +0.1)

x2 = (0,−0.1) .

The value of ωe been computed, so as to enforce that the initial kinetic energy

E(t = 0) = 1
2

∫
Ω
|u|2 dx = 2. The initial condition is shown in Fig. 3.1. A

no-slip condition is enforced on the domain boundary ∂Ω, which is compatible

with the velocity induced by the initial vorticity field, that is equal to zero,

as each of the vortices has a zero total circulation1. The Reynolds number is

defined as

Re ∆=
1

ν
.

3.2 VPM solver with a no-through flow

condition at the wall

In the context of vortex methods, one of the main difficulties resides in enforcing

a no-slip condition at the wall. As a first step towards this objective, the present

section provides a numerical tool to solve the 2-D Navier-Stokes equations in

vorticity-velocity formulation with a no-through flow condition at the wall ∂Ω,

1Note that the velocity is not exactly equal to zero at the solid walls, as the vorticity
support is actually infinite. Yet, the decay far from the dipole is exponential and the error
is therefore negligible. If we had used instead a dipole made of realistic vortices, thus each
with non-zero total circulation, the far-field velocity would only have decayed as 1/r2.

32 Chapter 3. No-slip condition and dipole in a box

Figure 3.1: Initial condition ω0 for the “dipole in a box” test case.

which is indeed more easily accounted for in vortex methods. We thus consider

Dω

Dt
= ν∇2ω with qω

∆= −ν
∂ω

∂n
= 0 on ∂Ω

u = ∇× (Ψêz)

∇2Ψ = −ω with u · n = 0 on ∂Ω ,

(3.2)

with ω the vorticity, u the velocity, Ψ the streamfunction, ν the kinematic

viscosity and n the inward pointing normal vector (see Fig. 3.2). As will appear

in Section 3.3, the vorticity flux qω is associated to the no-slip enforcement;

it aims at canceling the spurious tangential slip velocity remaining at the wall

after the solution has been advanced using a no-through flow condition. Setting

qω = 0 is equivalent to considering an “inviscid wall”, i.e. no vorticity enters

the fluid at the wall and a tangential slip velocity is allowed.

As the name suggests, VPM methods make use of a set of particles and a

grid in order to compute the flow field. On the one hand, the time evolution

is computed in a Lagrangian fashion by following the particles and, on the other

3.2. VPM solver with a no-through flow condition at the wall 33

hand, all spatial differential operations, such as for example the solution of the

Poisson equation,

∇2Ψ = −ω , (3.3)

are performed on the underlying grid. The time evolution of a particle p at

xp(t), moving at a velocity up(t)
∆= u(xp(t), t) and carrying some vorticity

ωp(t)
∆= ω(xp(t), t) is given by

dxp

dt
= up

dωp

dt
= ν

(
∇2ω

)
p

,

where
(
∇2ω

)
p
(t) ∆= ∇2ω (xp(t), t).

The computational domain Ω is a square defined by [−L/2, L/2]× [−L/2,

L/2] and the grid consists of N ×N cell-centered nodes xij = (xi, yj), with a

uniform mesh spacing h ∆= ∆x = ∆y = L/N , as shown in Fig. 3.2. For the

following, the notation for a grid field f at time tn is fn
ij

∆= f(xij , t
n) and the

field f carried by a particle at xn
p

∆= xp(t
n) is called fn

p
∆= f(xn

p , tn).

n

s

xij

∂Ω

Ω

x = −L
2 x = L

2

y = L
2

y = −L
2

Figure 3.2: Sketch of the computational domain Ω and of the grid (nodes are repre-
sented as bullets); definition of the normal vector n and of the tangential vector s.

The time integration is performed here using a mid-point second order

Runge-Kutta scheme (RK2). A particle redistribution is operated every (nr)th

time step (the distorted set of particles at xp is then replaced by a new set

of particles whose positions coincide with the grid nodes xij ; see Chapter 6

for more details about this operation). The computation at tn starts with

34 Chapter 3. No-slip condition and dipole in a box

the particle field ωn
p and the associated grid field ωn

ij . Considering, for the

moment, the more general case, where the flux qn
ω

∆= qω(x, tn) for x ∈ ∂Ω

(q
n+ 1

2
ω

∆= qω(x, tn+ 1
2)) is prescribed, the time integration using a time step ∆t

consists of the two following sub steps:

Predictor : from tn to tn+ 1
2

∆= tn + 1
2∆t

• Advection : ωn
ij

solve Eq. (3.3)−−−−−−−−−→ un
ij

un
ij

M2P to x
n
p−−−−−−−→ un

p

x
n+ 1

2
p = xn

p +
∆t

2
un

p

• Diffusion : ωn
ij

∇2(·)−−−→
(
∇2ω

)n
ij

with −ν
∂ω

∂n

∣∣∣∣
n

∂Ω

= qn
ω

(
∇2ω

)n
ij

M2P to x
n
p−−−−−−−→

(
∇2ω

)n
p

ω
n+ 1

2
p = ωn

p +
∆t

2
ν
(
∇2ω

)n
p

ω
n+ 1

2
p

P2M from x
n+1

2
p−−−−−−−−−−→ ω

n+ 1
2

ij

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

solve Eq. (3.3)−−−−−−−−−→ u
n+ 1

2
ij

u
n+ 1

2

ij

M2P to x
n+1

2
p−−−−−−−−−→ u

n+ 1
2

p

xn+1
p = xn

p + ∆t u
n+ 1

2
p

• Diffusion : ω
n+ 1

2
ij

∇2(·)−−−→
(
∇2ω

)n+ 1
2

ij
with −ν

∂ω

∂n

∣∣∣∣
n+ 1

2

∂Ω

= q
n+ 1

2
ω

(
∇2ω

)n+ 1
2

ij

M2P to x
n+1

2
p−−−−−−−−−→

(
∇2ω

)n+ 1
2

p

ωn+1
p = ωn

p + ∆t ν
(
∇2ω

)n+ 1
2

p

ωn+1
p

P2M from x
n+1
p−−−−−−−−−−→ ωn+1

ij

Redistribution : after nr time steps, reinitialize the set of particles.

The inviscid wall corresponds to the case qn
ω = q

n+ 1
2

ω = 0. Appendix E

gives the computational algorithm for the low storage third order Runge-Kutta

scheme from [130] (RK3). The different operations that are performed during

the time integration are detailed hereafter. Section 3.2.1 explains the solution

process of Eq. (3.3) and Section 3.2.2 describes the diffusion and the particle-

3.2. VPM solver with a no-through flow condition at the wall 35

mesh interpolation (P2M stands for particles-to-mesh interpolation, whereas

M2P stands for mesh-to-particles interpolation; see Chapter 6). Some time

convergence study results are then presented for the RK2 and RK3 schemes

in Section 3.2.3, with the purpose of subsequently analyzing, in Section 3.3,

the impact on the convergence of adding a no-slip enforcing procedure to the

present solver.

By anticipating the content of the following chapters aiming at develop-

ing an immersed interface VPM solver, one should observe that the required

computational steps are basically the same as those presented here.

3.2.1 Computation of the velocity

The Poisson Eq. (3.3) is solved using a no-through flow condition at the cavity

walls for the velocity field (or equivalently, a no-slip condition is enforced below

an infinitely thin vortex sheet with a jump of tangential velocity across the

sheet). The corresponding boundary condition for the streamfunction is Ψ =

Ψ = cst, since u · n = −∂Ψ/∂s = 0 along the body boundary (with s the

tangential vector to the wall, as shown in Fig. 3.2). The constant Ψ is arbitrary

as the flow domain is simply-connected, and we may thus set Ψ = 0 without

loss of generality (any other value of Ψ would lead to the same velocity field).

For an unbounded multiply-connected flow domain (i.e. with multiple bodies),

as will be considered in Chapter 4 in the framework of immersed interface

methods, this constant is implicitly fixed at infinity, hence Ψ is not arbitrary

on the body boundary and it is linked to the circulation of the body.

Eq. (3.3) is solved on the grid using the FFT algorithm [49], along the lines

of the Fourier-based VPM solvers from [16, 17, 50]. Due to the homogeneous

Dirichlet condition, the streamfunction Ψ is odd across the domain boundaries

in the x and y directions (see Fig. 3.3). As the Laplacian preserves the symme-

try properties, so should be the vorticity ω. A discrete sine transform (DST)

taking into account the h/2 offset between the domain boundary ∂Ω and the

grid nodes is performed accordingly on ωij (forward) and Ψij (backward), so

as to enforce the homogeneous Dirichlet condition on ∂Ω.

The velocity field u = (u, v) is also computed spectrally from Ψ. Its symme-

try properties are different, by construction : u is odd along x and even along

y, whereas v is even along x and odd along y. Discrete sine (DST) and cosine

(DCT) transforms are used accordingly, and the velocity component normal to

each wall is thus explicitly canceled.

36 Chapter 3. No-slip condition and dipole in a box

+ − +

−
+−+

− ω

(a)

+ − +

−
+−+

− Ψ

(b)

− + −

−
−+−

− u

(c)

− − −

+

−−−

+ v

(d)

Figure 3.3: Symmetries of the different fields taking part in the computation of the
velocity field by solving Eq. (3.3) using an FFT solver: even symmetry (plus sign)
and odd symmetry (minus sign).

3.2.2 Diffusion and particle-mesh interpolation

The term ∇2ω is computed on the grid using second order finite differences

for the RK2 integration scheme and fourth order finite differences for the RK3

integration scheme from Appendix E (the way to perform the evaluation of

∇2ω at grid nodes residing in the vicinity of immersed interfaces is explained

in Chapter 5). According to the previous observation, and using ghost grid

values so as to enforce qω = 0 on ∂Ω, an even extension of ω is computed

across the wall, as shown in Fig. 3.4. It should be observed that this extension

departs from the oddness required for ω in Eq. (3.3). There, the odd extension

is just a numerical maneuver in order to provide a no-through flow condition

at the wall, as the vorticity may be different from zero on ∂Ω, in general.

The M2P interpolations (mesh-to-particles), taking place in the corrector

sub step, also require extensions when applying the 2-D M ′
4 interpolation

scheme [93] on ∇2ω and on the velocity u (see Chapter 6 for more details

about the interpolation). The term ∇2ω has the same symmetry properties as

ω for the diffusion, i.e., it is also even. The velocity extension has the same

symmetry as previously in Section 3.2.1, namely odd in the velocity component

normal to the wall and even in the tangential component.

The even symmetry for ω is also imposed for the P2M interpolation. Any

particle in the vicinity of the wall with an M ′
4 interpolation range affecting

grid nodes outside of the flow domain is assigned an image particle of identical

vorticity and placed symmetrically on the other side of the wall. This approach

conserves the circulation, as the wall lies exactly in between two adjacent nodes.

From an algorithmic point of view, this is equivalent to first redistributing the

particles onto the grid without considering the wall and, secondly, to “folding

back” the vorticity outside of the domain into the flow (first in one grid direction

and then in the other one, see Fig. 3.5). The M2P and P2M ghost computation

3.2. VPM solver with a no-through flow condition at the wall 37

for immersed interfaces is detailed in Chapter 6.

+ + +

+

+++

+ ω

(a)

+ + +

+

+++

+ ∇2ω

(b)

− + −

−

−+−
− u

(c)

− − −

+

−−−
+ v

(d)

Figure 3.4: Symmetries of the different fields required for the diffusion term ∇2ω
and the particle-mesh interpolation (M2P and P2M), according to the above time
integration.

(a) (b)

Figure 3.5: P2M interpolation with a no-flux condition at the wall: “folding back”
the vorticity inside the flow.

3.2.3 Time convergence study

The time convergence of the method is studied by computing the solution of

Eq. (3.2) with the initial condition Eq. (3.1) at Re = 1000, using both the RK2

and RK3 no-through flow solvers, on a 512 × 512 grid. The following error

norms are computed at t = 0.2 (before the collision of the vortex dipole with

the wall, see Fig. 3.6(a)) and at t = 0.4 (after the collision, see Fig. 3.6(b))

ǫ2
∆= ‖ǫ‖2 ∆=

2h

ωeL



∑

i,j

(ωij − (ωref)ij)
2




1
2

ǫ∞
∆= ‖ǫ‖∞ ∆=

1

ωe
max

i,j
|ωij − (ωref)ij | ,

with ωij the solution computed using a time step ∆t and (ωref)ij the reference

solution computed using a time step ∆tref.

38 Chapter 3. No-slip condition and dipole in a box

(a)

(b)

Figure 3.6: Vorticity snapshots for the case at Re = 1000 and with a no-through
flow condition at the cavity walls. The fields correspond to the times (a) t = 0.2 before
the collision with the wall and (b) t = 0.4 after the collision, i.e. when the errors are
measured for the time convergence study.

According to the observations that will be made in Chapter 8, the periodic

redistribution of the particles modifies the underlying equation by adding some

spurious advection and diffusion terms. As a consequence, all the simulations

performed for the time convergence study must have the same absolute redis-

tribution period nr∆t, in order to ensure the convergence to the solution of the

same underlying discretized equation.

The reference solution is computed using ∆tref = 1 · 10−5 and nr = 40 for

RK2 (∆tref = 1 · 10−5 and nr = 20 for RK3). The results are shown in Fig. 3.7

and Table 3.1. They confirm the second order accuracy in time for the RK2

algorithm and the third order accuracy for the RK3 algorithm. Moreover, the

error is seen to be sensibly higher at t = 0.4 than at t = 0.2, as expected.

3.2. VPM solver with a no-through flow condition at the wall 39

2500 5000 10000

10
−8

10
−7

10
−6

10
−5

10
−4

1/∆t

ǫ 2

(a)

2500 5000 10000
10

−7

10
−6

10
−5

10
−4

10
−3

1/∆t

ǫ ∞

(b)

Figure 3.7: Time convergence study on a 512 × 512 grid for the case at Re = 1000
with a no-through flow condition at the wall: (a) L2-error norm and (b) L∞-error
norm. The error norms are represented by dashed lines for the RK2 computations
and thin solid lines for the RK3 computations (with “∆”-signs for the error measured
at t = 0.2 and “◦”-signs for that measured at t = 0.4); the thick solid line shows a
third order slope and the thick dash-dotted line shows a second order slope.

40 Chapter 3. No-slip condition and dipole in a box

RK2 RK3

t = 0.2 t = 0.4 t = 0.2 t = 0.4

ǫ2 2.05 2.09 3.01 3.01

ǫ∞ 2.06 2.07 3.01 3.01

Table 3.1: Observed order of convergence for the time convergence study on a 512×
512 grid for the case at Re = 1000 and with a no-through flow condition at the wall.

3.3 Enforcing a no-slip condition at the wall

Let us now consider the case where the boundary condition on ∂Ω is u = 0:

Dω

Dt
= ν∇2ω with qω

∆= −ν
∂ω

∂n
6= 0 on ∂Ω

u = ∇× (Ψêz)

∇2Ψ = −ω with u = 0 on ∂Ω ,

(3.4)

i.e., next to the no-through flow condition u · n = 0, the no-slip condition

u · s = 0 is also prescribed, compared to Eq. (3.2). First, notice that solving

Eq. (3.3) with u · n = 0 and u · s = 0 is over-determined according to [76], as

it would amount to solve a Poisson equation with both a Dirichlet condition

(Ψ = 0 resulting from u · n = 0) and a Neumann condition (∂Ψ/∂n = 0

resulting from u · s = 0). Moreover, the translation of the no-slip condition to

the vorticity field is not trivial when considering the time evolution equation

for the vorticity.

As a consequence (and conforming to what was originally done in [33], [72]

and [102]), we merely build the approach upon the solver from the previous

Section 3.2 - we refer to the latter as to the no-through flow solver - and, in

the present section, we describe the required corrections in order to provide the

correct boundary condition at the wall, i.e the no-slip condition.

In the light of the previous discussion, the tangential slip velocity u · s
allowed by the no-through flow solver is considered spurious here, and it thus

has to be canceled. As already mentioned in Section 3.2, the vorticity flux

emanating from the wall provides a mechanism to do so. The vorticity flux and

the no-slip condition are indeed intrinsically linked, as for an incompressible

viscous flow, the only source of vorticity is the flux resulting from the presence

of solid walls.

3.3. Enforcing a no-slip condition at the wall 41

Computing the cross product between n and the Navier-Stokes equations in

the velocity-pressure formulation leads to an exact expression of the vorticity

flux at the wall, in 3-D,

ν
∂ω

∂n
= n× Du

Dt
+

1

ρ
(n×∇p) + ν (n×∇)× ω , (3.5)

according to Wu et al. [133] and to the pioneering work of Lighthill [79]. Note

that the following vector identity (valid on the wall surface) has been used

∂ω

∂n
= (n×∇)× ω − n× (∇× ω) .

The last term from Eq. (3.5) is non-zero only for 3-D flows and can be rewritten

as [133]

(n×∇)× ω = n ·
[
(∇ω)T − (∇ · ω)I

]

= −n(∇π · ω) +∇π ωn + ωπ ·K

= n
∂ωn

∂n
+∇π ωn + ωπ ·K ,

where ωπ represents the projection of ω into the plane π that is tangent to the

wall, ωn is the normal component of ω (hence ω = ωnn+ωπ), ∇π
∆= ∇−n(n·∇)

is the gradient operator in the plane π, I is the unit tensor and K ∆= −∇πn is

the surface curvature tensor. As a consequence, we have

ν
∂ω

∂n
= n× Du

Dt
+

1

ρ
(n×∇p) + ν

(
n

∂ωn

∂n
+∇π ωn + ωπ ·K

)
, (3.6)

which shows that the vorticity flux is a complex physical phenomenon induced

by a tangential pressure gradient, a tangential acceleration and also by 3-D

interactions between the vortex lines and the surface curvature.

Even for the present simplified case (2-D flow in the presence of non-moving

walls), the evaluation of the vorticity flux still requires the knowledge of the

pressure gradient, which is not a priori available in a vortex method.

The following discussion about the way to circumvent this apparent issue

is inspired from [34] and starts with a brief summary about the work that

has been done in past decades in order to compute this flux with the aim of

accounting for solid walls in vortex methods. Based on that, the nature of the

approximated wall vorticity flux is studied, as well as the error introduced, and

various ways to integrate the underlying no-slip enforcement procedure inside

a given time integration scheme are presented.

42 Chapter 3. No-slip condition and dipole in a box

Let us start with an admissible vorticity field ωn (i.e., and according to [34],

a vorticity field that naturally provides a velocity field satisfying a no-slip

condition at the wall when solving Eq. (3.3) using the no-through flow condition

Ψ = Ψ = 0 on ∂Ω). If we advance the solution from tn to tn + ∆t using a no-

through flow condition at the wall (like in Section 3.2), the resulting vorticity

field ω∗ is no longer admissible. A singular vortex sheet ∆γ∗ of infinitesimal

thickness can be associated to the resulting slip velocity on the wall ∂Ω at tn+1.

Its value is given by the jump of tangential velocity u∗ ·s (see Fig. 3.8) and can

be deduced from a further solution of Eq. (3.3) with ω∗ as right-hand side. It

will be shown in Chapter 4 that

∆γ∗ = −∂Ψ∗

∂n
= −u∗ · s ,

where Ψ∗ and u∗ are taken on the flow side of the sheet (thus “above the

sheet”, i.e. the “+” side in Fig. 3.8) and where we also assume that u∗ · s = 0

on the body side (thus “below” the sheet, i.e. the “−” side in Fig. 3.8).

u+ · s

u− · s

∆γ = (u− − u+) · s

+

− body

flow

Figure 3.8: Sketch of a vortex sheet ∆γ corresponding to the jump of tangential
velocity u · s.

Using Eq. (3.3) and the divergence theorem, the total circulation of this

vortex sheet is then implicitly
∮

∂Ω

∆γ∗ dx =

∫

Ω

ω∗ dx . (3.7)

Eq. (3.7) shows that enforcing a no-slip condition in a cavity with non-moving

walls is well-posed only if
∫
Ω

ω dx = 0, as the slip velocity should tend to 0

when ∆t → 0 (when the flow is not subjected to an impulsive acceleration).

As a side note, the vortex sheet ∆γ∗ may be computed numerically based on

the grid field u∗
ij . Thanks to the symmetry property of the tangential velocity,

we have, for example on the bottom wall y = yb,

∆γ∗
i = −9

8
u∗

i,0 +
1

8
u∗

i,1 +O(h4) ,

with u∗
i,j

∆= u∗(xi, yb + (0.5 + j)h).

3.3. Enforcing a no-slip condition at the wall 43

According to Lighthill’s model [79], the vortex sheet is actually part of the

flow, and the following vorticity field is now “admissible”

ω∗(x) +

∮

∂Ω

∆γ∗(x′)δ(x− x′) dx ,

as the no-slip condition is satisfied below the sheet. The velocity field in-

duced by the latter extended vorticity field still presents a non-physical jump

in the tangential velocity component, by construction, and some regularization

is therefore required (the velocity must be smooth, as it must converge to the

solution of the Navier-Stokes equations for incompressible flows).

Despite being “non-physical”, the vortex sheet gives a measure of the vor-

ticity that must enter the flow. The bigger the slip velocity, the more vorticity

must enter the flow and hence the higher the associated vorticity flux has to

be in order to compensate the slip velocity.

Following Kinney et al. [70], Koumoutsakos et al. [72] further illustrates

the link between the vorticity flux and the vortex sheet by considering the 2-D

flow past a solid body described by its boundary ∂Ωb and subjected to a solid

rotation rate Wb(t). According to [72] and [102], the vortex sheet that appears

at the body boundary when using the no-through flow solver to advance the

solution from tn to tn +∆t, may be used to provide the flow with the increment

of circulation required by Kelvin’s theorem when Wb(t) is not constant. More

details about this derivation may be found in Appendix D. The following

relation between the vorticity flux and the vortex sheet is then obtained

−
∮

∂Ωb

(
ν

∫ tn+∆t

tn

∂ω

∂n
dt′
)

dx =

∮

∂Ωb

∆γ∗ dx .

However, this link is global and it prescribes the total circulation the vortex

sheet must have in order to be compatible with Kelvin’s theorem. A further

assumption, in agreement with the above observations, consists in stating that

this link remains valid locally

∆γ∗ ≃ −ν

∫ tn+∆t

tn

∂ω

∂n
dt or

∂(∆γ∗)

∂t
≃ −ν

∂ω

∂n
, (3.8)

if the vortex sheet is furthermore given a time continuous meaning, as shown

in [33] and [34].

44 Chapter 3. No-slip condition and dipole in a box

For the 3-D case with surface curvature, a Robin type condition on the

vorticity has to be used instead of a Neumann condition, as was put forward

in [35] and studied in [106]. The fact that one must account for the curvature

is noticeable in Eq. (3.6) and some applications using this Robin boundary

condition are provided in [105].

The validity of Eq. (3.8) has been studied in [15] for the 3-D Stokes equations

in a semi-infinite domain bounded by a planar surface (applying a Neumann

condition is here valid since there is no curvature). The authors show that the

vorticity flux and the vortex sheet are actually linked by an integral equation

when comparing the solutions obtained from the diffusion of a vorticity field,

on the one hand with a prescribed wall vorticity flux and, on the other hand,

with a zero vorticity flux (as does the no-through flow solver). Some error

estimates are then obtained when comparing the actual vorticity flux with its

approximation based on the resulting vortex sheet Eq. (3.8)

1

U

∥∥∥∥∥∆γ∗ + ν

∫ tn+∆t

tn

∂ω

∂n
dt

∥∥∥∥∥
∞

= O
((

ν∆t

L2

)p)
= O

((
∆t̃

Re

)p
)

,

with Re ∆= UL/ν, ∆t̃ ∆= U∆t/L, L a reference length and U a reference velocity.

The order of the error is p = 3
2 when the generated vortex sheet scales with ∆t

and p = 1
2 when ∆γ∗/U = O(1) (typically for impulsively accelerated flows).

Nevertheless, the approximated flux is in agreement with the underlying

physical mechanism of vorticity production at the wall, as the model aims at

enforcing a no-slip condition. Yet, the exact order of convergence of the solu-

tion, computed using this flux, to the solution of the Navier-Stokes equations

remains an open question, as the contribution of the advection term to the error

on the vorticity flux has not been quantified yet, to the author’s knowledge.

The value of the vorticity flux may only be evaluated at the end of the time

step computed using the no-through flow solver, i.e. when a measure of the

committed slip error is available. The classical way to account for it consists in

using a fractional step algorithm, as was originally proposed by [33], [72] and

[73]. The computation is split into a no-through flow step (with zero vorticity

flux) followed by a no-slip enforcement step imposing the value of the flux. In

its basic form, the splitting is performed as follows in 2-D:

Step 1: Based on an admissible vorticity field ωn at time tn, solve Eq. (3.4)

in order to obtain the vorticity field ω∗ at time tn +∆t satisfying a no-through

3.3. Enforcing a no-slip condition at the wall 45

flow condition at the wall (see Fig. 3.9(a)), using for example the solver from

Section 3.2.

Step 2: Evaluate the generated spurious vortex sheet by solving

∇2Ψ∗ = −ω∗ with Ψ∗ = 0 on ∂Ω

∆γ∗ = −∂Ψ∗

∂n
on ∂Ω ,

and then solve the following diffusion equation, in the same time interval

[tn, tn + ∆t]

∂ωw

∂t
= ν∇2ωw with −ν

∂ωw

∂n
=

∆γ∗

∆t
on ∂Ω

ωw(x, tn) = 0 ,
(3.9)

where the flux from Eq. (3.8) is assumed constant over the time step with no

initial slip at tn, by definition. This actually corresponds to using the time

average of the flux over the time step. Simple explicit formulas have been

developed [72] and then further improved in [102] (see Appendix E.8 for more

details), in order to solve the diffusion Eq. (3.9) in a semi-infinite domain for a

panel with uniform flux distribution (and furthermore constant in time).

The solution at tn + ∆t is then ωn+1 = ω∗ + ωw and should satisfy the

no-slip condition at the wall. Yet, in practice, the field ωn+1 is not exactly

admissible (see Fig. 3.9(b)). Note that the combined field consisting of ω∗ and

the vortex sheet ∆γ∗ is admissible, by construction. However, the diffusion

of the vortex sheet ∆γ∗, despite being conservative, slightly rearranges the

vorticity in the flow and this reintroduces a small erroneous slip velocity at the

wall. Section 3.3.2 deals with this issue by showing that an iteration may be

required for the no-slip enforcement. The same observation holds for the initial

vorticity field ωn, which is never strictly admissible at the beginning of the time

step computation, due to the previous observation. The correction procedure

therefore also attempts at correcting the slip remaining from the previous time

step.

We refer to the above splitting as to the “bulk-wall decomposition” (BWD)

approach, since the first step handles the evolution of the bulk field using zero

flux at the wall and the second step accounts for the contribution of the wall

flux. The time integration algorithm using an RK2 scheme for the “no-through

flow step” of the above BWD (i.e. Step 1), is called DRK2-END-PW-NS and is

46 Chapter 3. No-slip condition and dipole in a box

u∗ · s

n

−∆γ∗

(a)

un+1 · s

n

−∆γn+1

(b)

Figure 3.9: Enforcement of the no-slip condition at the wall: (a) computation of a
field u∗ satisfying a no-through flow condition, (b) diffusion of the resulting vortex
sheet ∆γ∗ into the flow, which results in a field un+1 with a smaller slip error ∆γn+1.

detailed in Appendix E (the notation DRK2-END-PW-NS means: Decomposed

RK2 scheme computing the wall contribution at the END of the time step using

the PW [102] formulas for the No-Slip enforcement; this will become clear in

the following sections).

The present BWD approach is first order in time, according to [34], and

the following time convergence study of the DRK2-END-PW-NS algorithm

confirms this predicted accuracy. This is expected, since the wall contribution

is only computed at the end of the RK2 time step, and not at every sub step.

Results are shown in Table 3.2. The same numerical setup as in Section 3.2.3 is

used here (the reference solution is also computed using DRK2-END-PW-NS

with ∆tref = 10−5). The errors are measured at t = 0.25 (before the collision)

and t = 0.348 (at the enstrophy maximum), see Fig. 3.10.

The main challenge therefore consists in adapting and incorporating the

BWD approach at the sub step level of a given time integration scheme (e.g.

inside the RK2 solver from Section 3.2 or inside the RK3 solver from Ap-

pendix E), so as to increase the order of convergence.

3.3. Enforcing a no-slip condition at the wall 47

t ∆t ǫ2 order ǫ∞ order

t = 0.25 2× 10−4 2.6595× 10−5 1.1701× 10−3

1× 10−4 1.2407× 10−5 1.10 5.5341× 10−4 1.08

t = 0.348 2× 10−4 3.0277× 10−4 2.7836× 10−2

1× 10−4 1.4365× 10−4 1.08 1.3711× 10−2 1.02

Table 3.2: Time convergence study on a 512 × 512 grid for the algorithm DRK2-
END-PW-NS and for the case at Re = 1000.

(a)

(b)

Figure 3.10: Vorticity snapshots for the case at Re = 1000 with a no-slip condition
at the cavity walls (obtained using DRK2-END-PW-NS). The fields correspond to the
times (a) t = 0.25 before the collision with the wall and (b) t = 0.348 at the enstrophy
maximum, i.e. when the errors are measured for the time convergence study.

At this point, two different aspects of the problem should be distinguished:

• the splitting of the equations,

• the approximation of the vorticity flux.

These aspects can be studied separately, and increasing the order of conver-

gence of the whole no-slip enforcing approach implies improving both aspects.

The splitting is studied in Section 3.3.1 and the computation of the flux in

Section 3.3.2.

48 Chapter 3. No-slip condition and dipole in a box

3.3.1 Study of the splitting effect for a prescribed flux

The effect of the splitting can be examined by considering a (non-physical)

problem, where the wall flux qω is prescribed. The resulting flow still satisfies a

no-through flow condition at the wall, but the vorticity production is artificial,

as it is not related to the no-slip condition here, i.e. the wall is no longer

“inviscid”.

First, the solution to this problem is computed without splitting of the

equations, as the flux is known at any time, and the convergence is assessed

both for the RK2 and the RK3 time integration schemes. Secondly, the effect of

the splitting, that is used for the aforementioned no-slip enforcement procedure,

is studied.

Time convergence study for the approach without splitting

The only computational step that is modified in the present case compared

to the RK2 no-through flow solver (or equivalently to the RK3 solver from

Appendix E) is the computation of∇2ω that must be performed with a non-zero

prescribed flux. For a second order discretization of ∇2ω, the approach from

Section 3.2.2, using an even symmetry of the vorticity, is no longer applicable

and the computation of fourth order ghosts is required so as to satisfy the

Neumann boundary condition on ∂Ω (sixth order ghosts are required for a

fourth order discretization of ∇2ω). The ghosts are obtained by extrapolation

using the prescribed derivative at the boundary and a set of nodes adjacent to

the wall.

The flux is given by

qω(x,−L
2 , t) = −Qω(t) cos

(πx

L

)

qω(x, +L
2 , t) = +Qω(t) cos

(πx

L

)

qω(−L
2 , y, t) = −Qω(t) sin

(
2πy

L

)

qω(+L
2 , y, t) = −Qω(t) sin

(
2πy

L

)

Qω(t) = 100 sin

(
2πt

Tq

)

Tq = 0.1 ,

(3.10)

where L = 2 is the cavity side length. The order of magnitude of the prescribed

flux is comparable to the observed flux associated with the no-slip condition

3.3. Enforcing a no-slip condition at the wall 49

at Re = 1000. The numerical setup used for the time convergence study is

identical to that performed in Section 3.2.3 (the vorticity field for this test case

is shown in Fig. 3.11 at t = 0.2 and t = 0.4).

(a)

(b)

Figure 3.11: Vorticity snapshots for the case at Re = 1000 with a no-through flow
condition and a prescribed non-zero flux at the cavity walls. The fields correspond
to the times (a) t = 0.2 before the collision with the wall and (b) t = 0.4 after the
collision (the errors are measured at those times for the convergence study).

The solution computed using the RK2 scheme without splitting serves as a

reference for the remainder of this chapter, as any alternative time integration

scheme (with splitting) should converge to the same solution. Results are given

in Fig. 3.12 and Table 3.3. They show that the rate of convergence observed

in Section 3.2.3 is not affected by the addition of a non-zero vorticity flux. As

a side note, the particle-mesh interpolation procedure still assumes an even

symmetry for the vorticity field, which is no longer true here. Interestingly,

this simplification does not affect the convergence.

50 Chapter 3. No-slip condition and dipole in a box

2500 5000 10000

10
−8

10
−7

10
−6

10
−5

10
−4

1/∆t

ǫ 2

(a)

2500 5000 10000
10

−7

10
−6

10
−5

10
−4

10
−3

1/∆t

ǫ ∞

(b)

Figure 3.12: Time convergence study on a 512× 512 grid for the case at Re = 1000
with a no-through flow condition and a prescribed vorticity flux at the wall: (a) L2-
error norm and (b) L∞-error norm. The error norms are represented by dashed lines
for the RK2 computations and thin solid lines for the RK3 computations (with “∆”-
signs for the error measured at t = 0.2 and “◦”-signs at t = 0.4); the thick solid line
shows a third order slope and the thick dash-dotted line shows a second order slope.

3.3. Enforcing a no-slip condition at the wall 51

RK2 RK3

t = 0.2 t = 0.4 t = 0.2 t = 0.4

ǫ2 2.05 2.07 3.01 3.02

ǫ∞ 2.06 2.07 3.01 3.04

Table 3.3: Observed order of convergence for the time convergence study on a 512×
512 grid for the case at Re = 1000 with a no-through flow condition and a prescribed
vorticity flux at the wall.

Accuracy of the no-slip enforcing procedure

First, one should observe that a noticeable difference exists between the above

no-slip enforcing procedure based on the bulk-wall decomposition (BWD) and

the classical splitting algorithm. The latter was introduced in the context of

vortex methods by Chorin [22] in order to account for the diffusion by using a

random-walk formulation (the accuracy of the splitting was later studied in [7]).

It consists in splitting the time step computation of the Navier-Stokes equations

into a first step solving the Euler equations and a second step consequently

solving the Stokes equations based on the solution obtained in the first step.

The BWD does not strictly follow this splitting scheme. The difference

becomes clear when analyzing the solution of the following linear convection-

diffusion equation (the velocity c(x, t) is assumed independent of ω here)

∂ω

∂t
+ c · ∇ω = ν∇2ω . (3.11)

Similarly to [34], the convection operator is defined as H ∆= −c · ∇ and the

diffusion operator as D ∆= ν∇2; the matrices H and D correspond to the

numerical discretization of these operators. For the sake of clarity, we consider

here a Eulerian approach that computes the evolution of W, the vector of

unknowns ω, and we may rewrite the linear PDE as an ODE

dW

dt
= H W + D W .

The exact solution W(t) = e(H+D)t W0 (with W0 the initial condition) can

also be rewritten as

Wn+1 = e(H+D)∆t Wn ,

when solving the problem over one time step ∆t between tn and tn+1.

52 Chapter 3. No-slip condition and dipole in a box

Splitting the computational step into an inviscid step (Euler equations)

and a viscous step (Stokes equations) in the sense of Chorin [22] amounts to

first solve for W̃ ∆= eH∆t Wn and, based on that, subsequently for Wn+1 ∆=

eD∆t W̃ = eD∆teH∆t Wn, which leads to an O(∆t2) error at every time

step, as eD∆teH∆t = e(H+D)∆t + ∆t2

2 (DH−HD) +O(∆t3) (H and D do not

commute, unless c is uniform), and hence the approach is first order overall.

Now, in the case of the BWD approach, consider again the simplified case

where the flux qω at the wall does not depend on the solution but is prescribed.

Thanks to the linearity, the solution of Eq. (3.11) may be decomposed as ω ∆=

ω∗ + ωw, where ω∗ and ωw are respectively solutions of

∂ω∗

∂t
+ c · ∇ω∗ = ν∇2ω∗

ω∗(t = tn) = ωn

−ν
∂ω∗

∂n
= 0

and

∂ωw

∂t
+ c · ∇ωw = ν∇2ωw

ωw(t = tn) = 0

−ν
∂ωw

∂n
= qω(t)

.

(3.12)

This decomposition requires to add the flux vector Qω to the vector of un-

knowns (note that it is still prescribed, though, as explained hereafter) and to

extend the definition of H and D so as to also account for a wall flux

V =


W

Qω


 ∆= V∗ + Vw and H + D ∆=


AWW AWQ

AQW AQQ


 ,

where V∗ corresponds to ω∗, Vw to ωw, AQQ(t) is such that eAQQtQω(t = 0)

yields the prescribed flux Qω(t) and AQW = 0, since the flux does not depend

on the vorticity in the present analysis (for the no-slip enforcement we would

have AQW 6= 0). The associated ODE’s read

dV∗

dt
= H V∗ + D V∗

V∗(tn) = V̂n =



W
n

0




and

dVw

dt
= H Vw + D Vw

Vw(tn) = V

̂

n =



 0

Qn
ω




,

where the operators v̂ and v

̂

are defined as follows

V̂ ∆=


W

0


 and V

̂

∆=


 0

Qω


 , hence V = V̂ + V

̂

.

3.3. Enforcing a no-slip condition at the wall 53

The solution Vn+1 is then obtained as the sum of Vn+1,∗ and Vn+1
w

Vn+1 = Vn+1,∗ + Vn+1
w = e(H+D)∆t V̂n + e(H+D)∆t V

̂

n = e(H+D)∆t Vn .

Note that the sequence of operations cannot be written as the composition

eDw∆te(H+D
∗)∆t of a convection-diffusion operator H + D∗ (with zero flux)

and a near-wall diffusion operator Dw. As a consequence, contrary to the clas-

sical splitting approach in the sense of Chorin [22], which relies on successively

applied operators, the BWD is based on a field decomposition, by construction.

Instead of being performed sequentially, the operations of this decomposition

are “parallel in time” for a prescribed flux. However, this breaks down for a

flux that depends on V∗. We may now properly define the DRK2 algorithm

as the “Decomposed RK2 scheme” corresponding to the time integration algo-

rithm based on the bulk-wall decomposition and using the mid-point rule RK2

scheme.

A comparison between Eq. (3.9) and Eq. (3.12) reveals that the convection

operator is missing in Eq. (3.9) for the original BWD approach. Similarly to

Chorin’s splitting, an error is therefore introduced at every time step. Indeed,

the exact integration of these equations yields

e(H+D)∆t V̂n + eD∆t V

̂

n = e(H+D)∆t (V̂n + V

̂

n)−∆tH V

̂

n

− ∆t2

2
(H2 + HD + DH) V

̂

n +O(∆t3)

= Vn+1 − ∆t2

2
HD V

̂

n +O(∆t3)

= Vn+1 +O(∆t2) ,

as HV

̂

n = 0, in practice. This is due to the fact that H is a hyperbolic operator

that does not require any boundary condition along the wall, considering that

the latter is a streamline and hence also a characteristic. From a different point

of view, this can also be explained by the fact that, since the wall velocity is

parallel to the boundary (at least in the “no-through flow” case), the derivative

c · ∇ is perpendicular to the normal derivative of the flux and must therefore

be independent on it. As a consequence, we are left with an overall O(∆t)

error. The time integration of this problem, in the context of VPM methods

and using an RK2 scheme for the zero-flux contribution ω∗, is called the DRK2-

END algorithm, i.e. Decomposed RK2 scheme computing the wall contribution

54 Chapter 3. No-slip condition and dipole in a box

at the END of the time step, which means that it is evaluated only once (see

Appendix E for a detailed description of this scheme).

Performing the decomposition at every sub step of the time integrator im-

proves the formal order of convergence, according to the following analysis for

the RK2 scheme:

Predictor :

Vn+ 1
2 ,∗ = V̂n +

∆t

2
(H + D) V̂n

V
n+ 1

2
w = V

̂

n +
∆t

2
D V

̂

n

⇒ Vn+ 1
2 = Vn +

∆t

2
(H + D) Vn − ∆t

2
H V

̂

n .

The computation of the next sub step requires to re-decompose the vector

Vn+ 1
2 into a “zero-flux” component V̂n+ 1

2 and a “zero-initial condition” com-

ponent V

̂

n+1
2 .

Corrector :

Vn+1,∗ = V̂n + ∆t (H + D) V̂n+ 1
2

Vn+1
w = V

̂

n + ∆t D V

̂

n+1
2

⇒ Vn+1 = Vn + ∆t (H + D) Vn+ 1
2 −∆t H V

̂

n+1
2

=
[

I + ∆t (H + D) +
∆t2

2
(H + D)2

]
Vn

− ∆t2

2
(H + D)H V

̂

n −∆t H V

̂

n+1
2

= e(H+D)∆t Vn +O(∆t3) ,

which shows that the overall error is now O(∆t2), conforming to the accuracy

of the RK2 scheme (I is the unit matrix). Yet, in the framework of VPM

methods, there is still a lack of consistency, due to the missing convection term,

and it does not appear in the above analysis valid for a linear problem (with

an advection velocity thus independent of the vorticity) and using a Eulerian

approach.

Consider to this end the DRK2-SUB scheme implementing this approach

for a VPM method (it corresponds to a Decomposed RK2 scheme computing

the wall contributions at the end of every SUB step of the time integrator, see

Appendix E).

3.3. Enforcing a no-slip condition at the wall 55

It performs the following operations for the predictor diffusion step:

ωn
ij

∇2(·)−−−→
(
∇2ω

)n
ij

with −ν
∂ω

∂n

∣∣∣∣
n

∂Ω

= 0

(
∇2ω

)n
ij

M2P to x
n
p−−−−−−−→

(
∇2ω

)n
p

ω
n+ 1

2 ,∗
p = ωn

p +
∆t

2
ν
(
∇2ω

)n
p

ω
n+ 1

2 ,∗
p

P2M from x
n+1

2
p−−−−−−−−−−→ ω

n+ 1
2 ,∗

ij

ω
n+ 1

2

ij = ω
n+ 1

2 ,∗
ij + (ωw)

n+ 1
2

ij ,

where (ωw)
n+ 1

2

ij is the contribution coming from the wall and computed on the

grid using the flux at tn.

One may observe that the bulk diffusion increment ∆t
2 ν

(
∇2ω

)n
p

(evaluated

with zero wall flux) is advected, since it is computed at xn
p and then trans-

ported to x
n+ 1

2
p , along with ωn

p . This is not the case for the Eulerian approach

described by the above error analysis, where only ωn is advected, and not the

bulk diffusion increment. However, a closer look to the DRK2-SUB scheme

shows that the wall contribution is here not advected, as it is computed at

x
n+ 1

2
p and then simply added to ω

n+ 1
2 ,∗

ij .

Yet, the wall contribution is the complement of the bulk diffusion increment

and it has the same status. The inconsistency arises from the different treat-

ment that (ωw)
n+ 1

2
ij is subject to, compared to ∆t

2 ν
(
∇2ω

)n
p
. Nevertheless,

the missing advection term can be accounted for by mapping (ωw)
n+ 1

2

ij onto

the particle position xn and by adding the result to the particle that already

resides in xn+ 1
2 , just the same way as for

(
∇2ω

)n
ij

. The last step accounting

for the wall flux contribution can thus be replaced by

(ωw)
n+ 1

2
ij

M2P to x
n
p−−−−−−−→ (ωw)

n+ 1
2

p

ω
n+ 1

2
p = ω

n+ 1
2 ,∗

p + (ωw)
n+ 1

2
p

ω
n+ 1

2
p

P2M from x
n+1

2
p−−−−−−−−−−→ ω

n+ 1
2

ij .

The complete VPM algorithm, including the required modification in the cor-

rector, is referred to as DRK2-CSUB (Decomposed RK2 scheme computing

Convected wall contributions at the end of every SUB step) and is detailed in

Appendix E.

56 Chapter 3. No-slip condition and dipole in a box

The time accuracy of the algorithms DRK2-END-PW, DRK2-SUB-PW

and DRK2-CSUB-PW is now assessed numerically for the flux prescribed by

Eq. (3.10) and using the numerical setup from Section 3.3.1. All approaches

use the explicit formulas from [102] (as indicated by the notation “PW”; see

Appendix E.8), with a time-averaged flux computed as

q̄ω
∆=

1

∆t

∫ tn+∆t

tn

qω dt .

This is equivalent to the flux evaluation Eq. (3.9) from the original BWD-based

no-slip enforcing procedure, as ∆γ∗/∆t measures the average of the flux over

the time step, according to Eq. (3.8). Note that for the RK2 predictor used

in DRK2-SUB-PW and DRK2-CSUB-PW, the flux average is performed over

∆t/2, as the computation goes from tn to tn+ 1
2 .

The results of the time convergence study are summarized in Table 3.4. The

DRK2-CSUB-PW algorithm converges one order faster than DRK2-END-PW

and DRK2-SUB-PW, when the error is measured with respect to a reference at

∆tref = 10−5 that is computed using the same algorithm. This shows that ac-

counting for the missing advection term in DRK2-CSUB-PW clearly improves

the consistency of the methodology. This stands in contrast with the “Eu-

lerian” error analysis which predicts a second order accuracy also for DRK2-

SUB-PW. As explained above, this analysis indeed ignores the advection of the

diffusion increment. Nevertheless, the first order convergence predicted by the

error analysis using the exact integration of the BWD approach (with one wall

contribution computed at the end of the time step) is in agreement with the

convergence rate observed for DRK2-END-PW and for DRK2-END-PW-NS,

where the flux is linked to the no-slip condition (see Table 3.2).

On the contrary, all three approaches do not converge when the error is

measured with respect to the RK2 reference solution, where the flux is im-

posed by using ghosts in the finite difference evaluation of ∇2ω. This could be

explained by the leading spatial error term that may differ from one approach

to another.

Another possibility consists in using the classical splitting approach, as was

done in Poncet [104]. In the first order variant, the particles are first ad-

vected and then interpolated onto the grid, where the diffusion is subsequently

computed with zero flux. Finally, the wall contribution can be added to the

vorticity field. The leading error term is ∆t2

2 (DH − HD)Vn, as previously

derived. Note that this error is introduced in the whole domain, since Vn in-

3.3. Enforcing a no-slip condition at the wall 57

RK2

DRK2 ǫ2 ǫ∞ ǫ2 ǫ∞

END-PW 1.188× 10−4 6.931× 10−3 3.263× 10−3 1.543× 10−1

1.08 1.02 −0.05 −0.02

SUB-PW 8.480× 10−5 1.280× 10−2 3.354× 10−3 1.590× 10−1

1.05 1.07 −0.01 0.02

CSUB-PW 3.035× 10−6 2.246× 10−4 3.379× 10−3 1.571× 10−1

2.18 2.14 0.00 0.00

Table 3.4: Results for the time convergence study on a 512 × 512 grid for the case
at Re = 1000 (t = 0.4) and with a no-through flow condition and a prescribed vor-
ticity flux at the wall, using different time integration schemes (the indicated errors
correspond to ∆t = 10−4); in the right part of the table, the error is measured with
respect to the RK2 reference solution obtained with ∆tref = 10−5, whereas in the left
part, the error is computed with respect to the own reference solution.

cludes both the bulk and the wall contributions. This can be compared to the

leading error term ∆t2

2 HD V

̂

n induced by the BWD approach. Interestingly,

the latter introduces the first order error only in the vicinity of the wall, as V

̂

n

solely contains the wall-flux.

The Strang formula [118] may be used in order to obtain a second order

splitting

eD∆t/2eH∆teD∆t/2 = e(H+D)∆t +O(∆t3) ,

while every sub step (eD∆t/2, eH∆t and again eD∆t/2) must be integrated with

a second order scheme (e.g. RK2). The latter methodology could become very

costly when used for the no-slip enforcement, as a Poisson solution is required

at each convection sub step, and also at each diffusion sub step in order to

compute the resulting vortex sheet to be diffused.

More recently, another second order splitting algorithm, based on the present

RK2 scheme (mid-point rule), was developed in Chatelin [19]. In the framework

of Lagrangian vortex methods, studying the time accuracy of this algorithm

requires to define the linearized convection operator H and diffusion operator

D as follows

H α =


 0

up


 and D α =


ν(∇2ω)p

0


 , with α

∆=


ωp

xp




the vector of particle unknowns.

58 Chapter 3. No-slip condition and dipole in a box

The sequence of operations is then

Predictor : α̃
n+ 1

2 = α
n +

∆t

2
H α

n

α
n+ 1

2 = α̃
n+ 1

2 +
∆t

2
D α̃

n+ 1
2

Corrector : α̃
n+1 = α

n + ∆t H α
n+ 1

2

α
n+1 = α̃

n+1 + ∆t D α
n+ 1

2 ,

which leads to an O(∆t3) error at every time step, as shown in [19]. The

associated VPM time integration scheme is called SRK2 (Split RK2) and is

given in Appendix E, for reference.

Strictly speaking, the corrector sub step does not follow the rules of “clas-

sical splitting”. For “classical splitting” approaches, the advection-diffusion is

treated as a composed operation, i.e. the output of the advection operation is

handled as an input for the diffusion. For the SRK2 scheme, the diffusion step

inside the corrector computes the right hand side ν(∇2ω)p at tn+ 1
2 (i.e. when

the particles are at a position xn+ 1
2), instead of computing it at tn+1, at the

particle position xn+1 that has just been computed during the advection step.

Yet, as explained in [19], this small change is required to yield the second order

accuracy.

Actually, a closer comparison between SRK2 and RK2 in Appendix E shows

that the corrector step is identical in both cases, whereas the predictor performs

the actual splitting of the operations. This integration scheme therefore still

requires using “convected” sub step contributions in the corrector when the

near-wall diffusion is accounted for in the decomposed scheme (DSRK2-CSUB

in Appendix E).

The time convergence is now examined for the DRK2-CSUB-PW-NS algo-

rithm (thus in the framework of the no-slip enforcing procedure), as it is similar

to the DSRK2-CSUB scheme. The numerical setting for this study is the same

as the one used for Table 3.2. Note that for the wall contribution inside the

RK2 predictor, the flux is computed as ∆γn+ 1
2 ,∗/(1

2∆t), as the computation

goes from tn to tn+ 1
2 . Indeed, in the next Section 3.3.2, it will be shown that

the evolution of the vortex sheet is linear with respect to the time period over

which it was generated, i.e. 1
2∆t for the predictor. The corrector flux is classi-

cally computed as ∆γn+1,∗/∆t. Results are provided in Table 3.5 (the reference

solution is computed using DRK2-CSUB-PW-NS with ∆tref = 10−5).

3.3. Enforcing a no-slip condition at the wall 59

t ∆t ǫ2 order ǫ∞ order

t = 0.25 2× 10−4 2.7934× 10−5 1.6826× 10−3

1× 10−4 1.3190× 10−5 1.08 8.0097× 10−4 1.07

t = 0.348 2× 10−4 2.7644× 10−4 3.1857× 10−2

1× 10−4 1.3040× 10−4 1.08 1.5352× 10−2 1.05

Table 3.5: Time convergence study on a 512 × 512 grid for the algorithm DRK2-
CSUB-PW-NS and for the case at Re = 1000.

The rate of convergence is still first order for both error norms L2 and L∞,

with a similar error level as those of Table 3.2. This shows that, next to the

improvement of the time algorithm by consistently accounting for the wall flux

contribution inside the sub steps, a more accurate evaluation of the wall flux

itself is needed. The next Section 3.3.2 deals with this subject.

3.3.2 Computation of the vorticity flux

As the vorticity flux required for the no-slip enforcement is based on the vor-

tex sheet, the present section first examines the behavior of this sheet during

the time step computation. Secondly, some suggestions are made in order to

improve the flux evaluation.

For all the following computations, the case at Re = 1000 is again studied

on a 512× 512 grid, using the numerical setup from Table 3.2.

Convergence of the slip error

The DRK2-END-PW-NS algorithm is first order in time and we are now inter-

ested in the accuracy of the associated no-slip enforcement. A direct measure of

the slip error is given by the vortex sheet ∆γn computed at the beginning of the

time step and based on the vorticity field ωn. Fig. 3.13 shows the vortex sheet

on the right wall of the cavity at t = 0.348 (at the enstrophy maximum, during

the collision of the dipole with the wall, see Fig. 3.10). It can be observed

that the slip error scales with the time step ∆t and the computed convergence

rate for the L∞-error norm ǫ∞
∆= maxy |∆γn| is exactly 1.00. As expected, the

convergence of the slip error is hence also first order.

60 Chapter 3. No-slip condition and dipole in a box

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

y

∆γ

Figure 3.13: Vortex sheet ∆γn observed at the beginning of the time step on the
right wall (x = L/2) at t = 0.348 (maximum enstrophy) for the case at Re = 1000
with a no-slip condition and computed using DRK2-END-PW-NS on a 512×512 grid;
the order of the sheet with respect to the time step ∆t is examined: ∆t = 2 · 10−4

(blue curve), ∆t = 1 · 10−4 (red curve) and ∆t = 1 · 10−5 (black curve).

Evolution of the vortex sheet inside a time step

Next, we analyze the evolution of the vortex sheet during the time step compu-

tation in Fig. 3.14. The vortex sheet ∆γn at the beginning of the time step is

compared with those observed at the end of the RK2 predictor and of the RK2

corrector. Moreover, a comparison is performed between DRK2-END-PW-NS

and DRK2-CSUB-PW-NS.

At tn+ 1
2 , the predictor vortex sheet for DRK2-CSUB-PW-NS corresponds

to ∆γn+ 1
2 ,∗ and is associated to ωn+ 1

2 ,∗, i.e. it is precisely this sheet that is

diffused at tn+ 1
2 during the near-wall diffusion step, in order to yield ωn+ 1

2 . In

the case of DRK2-END-PW-NS, the predictor vortex sheet is ∆γn+ 1
2 and it

results from ωn+ 1
2 . The sheet ∆γn+ 1

2 is not used for any operation here, as the

wall contribution is only computed at the end of the time step. The corrector

sheet is ∆γn+1,∗ for both algorithms, and it is used for the near-wall diffusion

step in both cases. Note that the remaining sheet ∆γn+1 after the diffusion of

∆γn+1,∗ is then again of the order of ∆γn.

Interestingly, the vortex sheets from DRK2-END-PW-NS and DRK2-CSUB-

PW-NS are nearly indistinguishable. Despite the improved consistency of the

time integration scheme (see Section 3.3.1), the slip error ∆γn observed when

using DRK2-CSUB-PW-NS is not reduced compared to DRK2-END-PW-NS.

3.3. Enforcing a no-slip condition at the wall 61

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

y

∆γ

Figure 3.14: Vortex sheet on the right wall (x = L/2) at t = 0.348 (maximum
enstrophy) using ∆t = 2·10−4; DRK2-CSUB-PW-NS (solid black curves) and DRK2-
END-PW-NS (dotted colored curves); ∆γn at the beginning of the time step (blue), at

the end of the RK2 predictor step (red; ∆γn+ 1
2 for DRK2-END-PW-NS and ∆γn+ 1

2
,∗

before the wall diffusion step for DRK2-CSUB-PW-NS) and at the end of the RK2
corrector step (green; ∆γn+1,∗ before the near-wall diffusion step).

One may further observe that the evolution of the vortex sheet from tn to

tn+1 seems to be linear in time. Fig. 3.15 confirms this observation by showing

the evolution of the vortex sheet as a function of the time at y = −8.40 ·
10−2, i.e. where |∆γ| is maximum. A polynomial expression of ∆γ(t) is also

provided (quadratic interpolation). Indeed, the second order coefficient is small

compared to the first order coefficient (the ratio is approximately 1.6 · 10−3).

Computing the wall flux using an iteration

All previous no-slip enforcing algorithms evaluate the wall flux based on the

residual tangential slip velocity. Consider for example the DRK2-END-PW-NS

scheme. The wall contribution is computed at the end of the time step and the

vortex sheet to be diffused is ∆γn+1,∗. By construction, the following field is

admissible

ωn+1,∗(x) +

∮

∂Ω

∆γn+1,∗(x′)δ(x− x′) dx .

62 Chapter 3. No-slip condition and dipole in a box

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

tn tn+ 1
2 tn+1

∆γ

∆γ(t) = 1.12 · 10−2 + 1.95 · 10−2
“

t−tn

∆t

”

− 3.14 · 10−5
“

t−tn

∆t

”2

Figure 3.15: Vortex sheet on the right wall (x = L/2 and y = −8.40 · 10−2) at t =
0.348 (maximum enstrophy) using DRK2-END-PW-NS and ∆t = 2 · 10−4; the vortex

sheet is shown before the near-wall diffusion step for the RK2 predictor (∆γn+ 1
2

,∗)
and the RK2 corrector (∆γn+1,∗); the solid black curve corresponds to a quadratic
interpolation (see above the figure for the expression of the polynomial).

Yet, the diffusion of the vortex sheet slightly alters the vorticity distribution

and the resulting field ωn+1 is no longer admissible, in the sense that it presents

a slip error ∆γn+1 (which is nevertheless smaller than ∆γn+1,∗).

An alternative criterion consists in requiring that the vorticity field after

the diffusion of the vorticity flux is admissible. Stated equivalently, we seek

a vortex sheet δγn+1,∗ 6= ∆γn+1,∗ such that the field ωn+1 resulting from the

diffusion of the flux δγn+1,∗/∆t is admissible. Note that, as a consequence, the

field combining ωn+1,∗(x) and δγn+1,∗ is not admissible. This implicit problem

can be solved by a simple iteration.

Starting with the vorticity field (ωn+1,∗)(1) ∆= ωn+1,∗ and the associated

vortex sheet (∆γn+1,∗)(1) (step k = 1), the following sequence of operations is

performed while ‖(∆γn+1,∗)(k)‖∞ is above a prescribed tolerance:

1. Compute the wall flux (∆γn+1,∗)(k)/∆t.

2. Evaluate the associated wall contribution (ωw)(k+1) determined by the

diffusion of this flux (e.g. by using the explicit formulas PW [102]).

3. Add this contribution to the vorticity field: (ωn+1,∗)(k+1) ∆= (ωn+1,∗)(k)+

(ωw)(k+1).

3.3. Enforcing a no-slip condition at the wall 63

4. Compute the vortex sheet (∆γn+1,∗)(k+1) associated to (ωn+1,∗)(k+1) and

increment the iteration index (k ← k + 1).

The previous approach can be recast into this formalism, as it consists in

performing only the first iteration. If the procedure convergences, the sought

vortex sheet is, by linearity of the diffusion operator,

δγn+1,∗ = lim
q→∞

q∑

k=1

(∆γn+1,∗)(k) .

Fig. 3.16 shows the convergence of the iteration for the case at Re = 1000

using DRK2-END-PW-NS. For the present computation, the iteration is per-

formed Nit = 10 times at every time step. Interestingly, one may observe

in Fig. 3.16(b) that the convergence is slower when the second derivative of

∆γn+1,∗ is larger in absolute value. While using a smaller time step does not

affect the convergence rate, one may nevertheless observe that the error level

is reduced.

The above observations may be explained by the fact that the diffusion

of the vortex sheet spreads the vorticity inside the flow domain. Canceling

the peaks of the vortex sheet is more difficult, since the vorticity flux coming

from the peak yields a smooth(er) surrounding vorticity field, due the diffusion

process. The size of the surrounding area that is affected by the peak diffusion

scales with
√

ν∆t. Hence, the smaller the time step, the smaller the diffusion

area and the lower the remaining vortex sheet after the diffusion.

Fig. 3.17 compares the vortex sheet (∆γn+1,∗)(1) and the “total” vortex

sheet δγn+1,∗ leading to an admissible vorticity field ωn+1. Keep in mind

that δγn+1,∗ does not have a real physical meaning apart from the flux it is

related to. Both sheets differ the most at the peaks, according to the previous

discussion. Indeed, a higher flux is required locally in order to cancel out the

sharp peaks.

In Fig. 3.18, the application of this iteration using Nit = 10 is also compared

to the classical case Nit = 1 for the DRK2-END-PW-NS integration scheme. As

expected, the initial vortex sheet (the slip error) is nearly completely canceled

for the case with Nit = 10. Moreover, the vortex sheet observed at the end

of the RK2 predictor and corrector are significantly lower for the case with

Nit = 10 (the vortex sheet (∆γn+1,∗)(1) is shown for the corrector, whereas for

the predictor it corresponds to ∆γn+ 1
2 ,∗, as no wall contribution is computed

inside the predictor and hence no iteration is required).

64 Chapter 3. No-slip condition and dipole in a box

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

y

∆γ

(a)

1 5 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

|∆γ|

(b)

Figure 3.16: Iteration over the vortex sheet ∆γn+1,∗ using DRK2-END-PW-NS so

as to obtain (∆γn+1,∗)(k) → 0 when k → ∞ (here k = 1, . . . , 10): (a) (∆γn+1,∗)(k)

as a function of y using ∆t = 2 · 10−4 (k = 0 in solid black, k = 5 in solid blue,

k = 10 in solid red and other values of k in solid grey); (b) convergence of |∆γ| at

y = −8.40 · 10−2 (∇) and at y = −1.54 · 10−1 (◦) using ∆t = 1 · 10−4 (dotted
lines) and ∆t = 2 · 10−4 (solid lines).

3.3. Enforcing a no-slip condition at the wall 65

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

y

∆γ

Figure 3.17: Vortex sheet obtained by using the iteration (∆γn+1,∗)(k) and us-
ing DRK2-END-PW-NS with ∆t = 2 · 10−4 and Nit = 10: actual slip error
measured before the near-wall diffusion step ((∆γn+1,∗)(1) in solid black) and to-
tal vortex sheet to be diffused in order to obtain an admissible vorticity field ωn+1

(δγn+1,∗ ≃
P10

k=1(∆γn+1,∗)(k) in solid red).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

y

∆γ

Figure 3.18: Vortex sheet obtained by using the iteration (∆γn+1,∗)(k) and using
DRK2-END-PW-NS with ∆t = 2 · 10−4: Nit = 1 (dotted lines) and Nit = 10 (solid
lines); ∆γn at the beginning of the time step (blue), at the end of the RK2 predictor

step ∆γn+ 1
2

,∗ (red) and at the end of the RK2 corrector step (∆γn+1,∗)(1) (black).

66 Chapter 3. No-slip condition and dipole in a box

The time convergence study results for DRK2-END-PW-NS shown in Ta-

ble 3.6 reveal that the convergence rate is first order, as expected (note that

using DRK2-CSUB-PW-NS in conjunction with the iteration does not im-

prove the convergence rate). However, compared to the results from Table 3.2

(Nit = 1), the error level at t = 0.348 is slightly reduced here (with Nit = 10).

Indeed, it corresponds to the dipole collision, i.e. when the wall flux plays the

most important role.

t ∆t ǫ2 order ǫ∞ order

t = 0.25 2× 10−4 3.0936× 10−5 1.6102× 10−3

1× 10−4 1.4425× 10−5 1.10 7.5541× 10−4 1.09

t = 0.348 2× 10−4 2.3433× 10−4 1.5253× 10−2

1× 10−4 1.1005× 10−4 1.09 7.1842× 10−3 1.09

Table 3.6: Time convergence study on a 512 × 512 grid for the algorithm DRK2-
END-PW-NS with Nit = 10 and for the case at Re = 1000.

One must keep in mind that this scheme is computationally very expensive,

as a Poisson solution is required at every iteration in order to evaluate the

vortex sheet. Yet, it sheds some light in the process of computing a consistent

wall flux for the no-slip enforcement.

Perspectives

Despite the fact that the above iteration has been designed to provide an exact

no-slip condition (after the convergence of the iteration), the associated flux

does not necessarily represent a higher order approximation of the actual vor-

ticity flux. Indeed, ensuring that the vorticity field remains admissible does

not guarantee that we will obtain a high order solution of the Navier-Stokes

equations. Hence, the task of determining an appropriate expression for the

flux is not completed yet.

One possibility that would improve the above iteration procedure consists

in iterating over the whole time step so as to yield an equivalent vortex sheet

(and hence an associated flux) that cancels the slip error at the end of the time

step, while also accounting for the advection. Yet, this would come at en even

higher cost compared to the above methodology.

3.4. Results for the dipole flow in a box at Re = 1000 67

For the time being, no solution was found for the computation of a wall

flux that yields a second order time integration algorithm enforcing the no-slip

condition.

Another line of inquiry consists in computing a flux that explicitly considers

the evolution of the vortex sheet during the time step, by trying for example

to account for the second order term (see Fig. 3.15). The objective is thus to

obtain a slip error ∆γn that scales like ∆t2.

Following this idea, a methodology based on a Richardson extrapolation

was tested. It consists in assuming that the flux computed at the end of the

RK2 predictor step (∆γn+ 1
2 ,∗/(1

2∆t)) and at the end of the RK2 corrector

(∆γn+1/∆t) have the same temporal leading error term. The recombination

(4∆γn+ 1
2 ,∗ −∆γn+1,∗)/∆t then leads to a second order approximation of the

flux at tn. However, using this expression is unstable, even for very small time

steps.

Since all approaches are first order in time, one may equivalently consider

directly using the vortex sheets ∆γn and ∆γn+ 1
2 for the flux evaluation, as

they are available without additional Poisson solution. This allows to save 2

Poisson solutions from the 4 that are currently required. The interpretation

of the vortex sheet as a flux correcting a slip error in the framework of the

bulk-wall decomposition is then less straightforward, though, as everything is

shifted in time.

3.4 Results for the dipole flow in a box

at Re = 1000

In this section, some results are provided for the case at Re = 1000, using the

DRK2-CSUB-PW-NS algorithm, thus with a no-slip condition at the cavity

walls. For the following simulations, the time step is adaptive so as to satisfy

|ω|max∆t < 0.25, ‖S‖max∆t < 0.25 (S ∆= 1
2 (∇u + (∇u)T) is the strain rate

tensor) and ν∆t/h2 ≤ 0.2. The redistribution frequency is also adaptive, i.e.

the particles are redistributed when ‖S‖max∆tr ≥ 0.1, where ∆tr is the elapsed

time since the last redistribution.

Fig. 3.19 shows the evolution of the dipole flow between t = 0 and t = 1, on

a 512×512 grid. The collision of the vortex dipole with the right wall occurs at

around t ≃ 0.35, while the impact of the weaker dipole, which is moving to the

left, only happens after t = 1 and is not displayed here. After the impingement

68 Chapter 3. No-slip condition and dipole in a box

on the right, the secondary vorticity generated at the wall rolls up with the

dipole vorticity and in a second phase, some filamentary structures from the

secondary vorticity remaining at the wall are attracted by the vortex cores

between t = 0.6 and t = 0.8. From then on, a quasi equilibrium is reached (at

least on the right side) and the diffusion becomes dominant.

Next, the vorticity iso contours are compared for two different grid resolu-

tions (N = 512 and 1024) in Fig. 3.20. Up to t = 0.6, the results agree quite

well, but later on, some significant differences appear in the roll-up phase. The

advection of the filamentary structure is less well captured for the case with

N = 512. Yet, for the same case, the nearly stationary vorticity core in the

right corner of the figure (at around (0.9, 0.1)) is well captured.

Fig. 3.21 shows the spacial convergence of the kinetic energy E and the

enstrophy E defined by

E ∆=
1

2

∫

Ω

(u2 + v2) dx

E ∆=
1

2

∫

Ω

ω2 dx .

Again, the results are shown for different grid resolutions (N = 256, N = 512,

N = 1024 and N = 2048) and a comparison is made with reference results

obtained on a 721× 721 grid using a pseudo-spectral Chebyshev method [43]

(note that the Chebyshev collocation points provide a better grid resolution

near the wall and, hence, less points are required compared to a uniform grid).

The coarsest case N = 256 is clearly under resolved, for both the energy and

the enstrophy. As to the energy, one can observe that it is already converged

for the case with N = 512. Regarding the enstrophy, the convergence is much

slower, especially at the peak. Even the most refined case N = 2048 provides

a peak value that slightly differs from the reference curve.

Fig. 3.22 further shows the mesh Reynolds number Reh
∆= |ω|maxh

2/ν for

the different cases studied here above. A well-resolved simulation is charac-

terized by Reh = O(1). Only the most refined case with N = 2048, and in

a lesser extent also with N = 1024, actually fulfill this criterion. The highest

mesh Reynolds number is observed at the enstrophy peak, during the primary

collision (at t ≃ 0.35), as expected.

3.4. Results for the dipole flow in a box at Re = 1000 69

t = 0.0 t = 0.2

t = 0.4 t = 0.6

t = 0.8 t = 1.0

Figure 3.19: Time evolution of the vorticity for the dipole flow inside a cavity at
Re = 1000; results are obtained on a 512×512 grid, using DRK2-CSUB-PW-NS with
an adaptive time step ∆t.

70 Chapter 3. No-slip condition and dipole in a box

0.5 0.75 1
0

0.25

0.5

t = 0.4

0.5 0.75 1
0

0.25

0.5

t = 0.6

0.5 0.75 1
0

0.25

0.5

t = 0.8

0.5 0.75 1
0

0.25

0.5

t = 1.0

Figure 3.20: Zoom of the vorticity iso contours (with ω = . . . ,−30,−10, 10, 30, . . .)
in the upper right quarter of the domain for the dipole flow inside a cavity at Re =
1000; comparison between N = 512 (black contours) and N = 1024 (red contours),
positive valued contours are represented by dashed contours, whereas negative valued
contours by solid contours.

3.4. Results for the dipole flow in a box at Re = 1000 71

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

E

(a)

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

t

E

(b)

Figure 3.21: Spatial convergence of the global diagnostics as a function of the time
for the dipole flow in a cavity at Re = 1000: (a) kinetic energy and (b) enstrophy;
N = 256 (blue line), N = 512 (green line), N = 1024 (red line), N = 2048 (cyan
line) and reference (black line).

72 Chapter 3. No-slip condition and dipole in a box

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

t

Reh

Figure 3.22: Mesh Reynolds number as a function of the time for the dipole flow in
a cavity at Re = 1000: N = 256 (blue line), N = 512 (green line), N = 1024 (red
line) and N = 2048 (cyan line).

Chapter 4

Development of an

unbounded immersed

interface Poisson solver for

vortex particle-mesh

methods

The content of this chapter was submitted in September 2013 and

accepted in March 2014 for publication as an article [88] in the

journal Computers & Fluids. It is entitled “An immersed interface

solver for the 2-D unbounded Poisson equation and its application

to potential flow”; the authors are Y. Marichal, P. Chatelain and

G. Winckelmans. The article is here mostly reproduced as it was

submitted.

Part of this work was also published in Procedia IUTAM in the

framework of the “IUTAM Symposium on Particle Methods in Fluid

Mechanics” in October 2012 (Copenhagen), see [87].

Abstract This paper presents a novel algorithm to solve the 2-D potential

flow past complex geometries with circulation in unbounded domain and in the

presence of a given vorticity field. It is based on a Poisson solver that combines

74 Chapter 4. Unbounded immersed interface Poisson solver for VPM

two components: the immersed interface method to enforce the boundary con-

dition on each inner boundary and the James-Lackner algorithm to compute

the outer boundary condition consistent with the unbounded domain solution.

The algorithm is here based on second order finite differences and it requires

solely 1-D stencil corrections; this makes the immersed interface part of the

present method easily extendable to higher dimensional problems. The treat-

ment of the outer boundaries requires an iterative boundary potential method.

The algorithm is validated, by means of grid convergence studies, on the flow

past multiple bodies. The results confirm the second order accuracy every-

where. The algorithm is also self consistent as “all is done on the grid” (thus

without using a vortex panel boundary element method in addition to the grid).

For cusped airfoils, a consistent way to enforce the Kutta-Joukowsky condition

is also presented. The present algorithm constitutes a crucial building block

towards an immersed interface-enabled vortex particle-mesh method for the

computation of unsteady viscous flows, with boundary layers, detached shear

layers and wakes. A possible extension to 3-D problems is also briefly discussed.

4.1 Introduction

The study and the development of solution techniques for Poisson equations

is a recurring research topic as they appear in many areas of mathematical

and computational physics, e.g. electromagnetism, continuum mechanics and

theoretical physics. This wide range of applications has given rise to many

different solution techniques. We here consider two aspects of the problem that

still remain a challenge today: taking into account irregular interior boundary

geometries and providing outer boundary conditions that are compatible with

the solution of the equation in an unbounded domain.

These two key components can also be found in a more specific context,

in the framework of Computational Fluid Dynamics for the simulation of the

flow past bluff bodies in an unbounded domain (external flow aerodynamics).

Moreover, in incompressible fluid dynamics, one is always constrained to solve

at least one Poisson equation per time step and obtaining its solution represents

the most expensive computational step. The choice of the present application,

namely potential flow in the presence of a given vorticity field, follows this

observation and is motivated by the fact that it represents one of the compu-

tational steps required for the simulation of unsteady bluff body flows using

4.1. Introduction 75

a viscous vortex particle method combined with a vortex panel method [58]

(boundary element method), as explained for example in [72, 102].

Whether for Poisson equations, for the Navier-Stokes equations in fluid

dynamics, or for other types of PDE’s, great efforts have been made in order to

incorporate irregular boundary geometries inside the so-called structured grid

methods (finite difference methods, spectral methods, etc.).

One of the first attempts to achieve this goal in the context of fluid dynamics

was undertaken by Peskin [101]. It is considered to be the pioneering work for

a class of methods known as the immersed boundary methods [100, 92]. This

class of methods provides a discrete representation of the singular source term

acting at the irregular boundary which is immersed inside the computational

domain. Hence, considering the flow past moving bodies which are either rigid

or even deforming is greatly simplified as the grid must not be adapted to fit

the boundaries.

Based on a similar approach and following the same goal, Brinkman-type

penalization methods have also emerged [3]. The latter approach can also

be applied in combination with different kinds of discretization methods, i.e.

spectral methods [66], finite differences [3] or vortex particle methods [32, 109,

50]. However, the regularization of the singular source term over a few grid

cells entails a smearing of the solution near the interface, as has been shown

for example in [80], and can lead to a loss of accuracy [125]. For high Reynolds

number flows, this can be problematic because the boundary layers may not be

captured properly. Therefore, methods capturing sharp interfaces have been

developed, such as the ghost-cell approach [85], the cut-cell method [24] or the

hybrid Cartesian/immersed boundary method (HCIB [54, 51]).

In the same spirit, immersed interface methods have appeared in the lit-

erature [77] as a consistent way to take into account possible jumps of the

unknown at the interface, e.g. by modifying the finite difference stencil in the

vicinity of the interface. The original stencil correction technique [77] uses

multiple-dimensional Taylor series. This can however lead to stability issues

in the resulting linear system resolution and requires among others a careful

choice of the stencil nodes [78]. Other methods use instead one-dimensional

Taylor series (dimension splitting approach, see [129, 80, 21]). The method de-

veloped here is based on the latter approach from [80], as the stencil correction

procedure is more easily applicable to higher dimensional problems: for each

grid direction, the stencil corrections are derived at the intersections of the in-

76 Chapter 4. Unbounded immersed interface Poisson solver for VPM

terface with the different grid axes along the corresponding direction, according

to the prescribed boundary condition. The present approach thus provides a

special treatment for grid nodes close to the interface. This feature is shared by

all sharp-interface capturing methods. The cut-cell method modifies the grid

cell geometry near the interface, the ghost-cell approach extends the solution

across the boundary and the HCIB method interpolates the solution on the

interior grid nodes closest to the interface using the solution and the boundary

condition.

The other key component considered here is the unbounded outer boundary

condition. The most natural way to take this into account for a Poisson equa-

tion is to perform the convolution of the source term with the free space Green’s

function, either through direct summation and ideally by fast summation (fast

multipole method in two [55] and three dimensions [6]). Another class of meth-

ods is based on fast Fourier transforms [60, 17] but, as the immersed interface

approach requires local modifications of the spatial differential operator, it is

hardly applicable here.

We follow a different approach based on the James-Lackner algorithm [62,

74], which has been further improved in [90] and which additionally remains

compatible with mesh refinement techniques. The solution procedure is based

on two problems, the first one being obtained by imposing homogeneous Dirich-

let conditions on the outer boundary and the second problem computes correc-

tion charges at the outer boundary which result in an inhomogeneous Dirich-

let condition being consistent with the unbounded character of the solution.

Miller [91] extended the method to include some irregular interior boundaries

held at a fixed potential. The presence of interior boundaries with unknown

surface charges results in a method which is intrinsically iterative.

The present approach combines the work of Linnick and Fasel [80] and

Miller [91] and generalizes the algorithm to allow the computation of potential

flow past multiple bodies accounting for a given compact vorticity field. In

this case, the streamfunction is the superposition of a function linear in space

(free stream flow field) and an unbounded solution of the Poisson equation.

The streamfunction solution is constant in the interior boundaries but the

value of this constant is not known a priori. This value is determined by a

supplementary constraint about the circulation of the flow around each solid

body.

4.1. Introduction 77

In this chapter, we thus propose a second order finite difference method to

compute the solution of a two-dimensional Poisson equation in an unbounded

domain with interior boundaries of complex geometry.

The underlying objective of the present work is to integrate the resulting

approach within a vortex particle method [34, 132]. Vortex particle methods

perform very well for unbounded vortical flows but accounting for solid bodies

remains difficult. Penalization methods have been used (as mentioned above

[32, 109, 50]). A different technique consists in combining the Poisson solver

with a boundary element method to account for the presence of the walls,

either by combining it with a vortex panel method [72, 102, 103, 83], either

by computing equivalent sources of velocity potential [35, 104]. This procedure

allows to recover from a given vorticity field a velocity field that also respects the

no-through flow condition at the surface of the body. In the specific context of

vortex particle-mesh (VPM) methods, relying simultaneously on particles and

on a grid [23, 28, 83], the present approach is a more consistent alternative

to the combination of the finite difference Poisson solver with the boundary

element method, as it preserves the order of convergence up to the wall.

In Section 4.2, the governing equations for the elliptic problem are given.

Section 4.3 is devoted to the methodology description: in Section 4.3.1, the

immersed interface approach is detailed in order to take into account the interior

boundaries with prescribed outer boundary conditions; in Section 4.3.2, the

iterative boundary potential method is detailed so as to obtain the correct outer

boundary conditions; in Section 4.3.3, the global algorithm is given, and Section

4.3.4 briefly presents a possible extension of the approach to three-dimensional

problems. Section 4.4 is devoted to the validation of the methodology for

several potential flow problems.

Results are first compared with the analytical solution for the flow past a

cylinder. The convergence behavior of the approach is assessed and the error

value is compared with that obtained using a vortex panel method. A conver-

gence study is also performed for the prediction of the added mass coefficient

of an elliptical cylinder. Next, the order of convergence is assessed for the flow

past an airfoil with a cusped trailing edge. This case requires the development

of a supplementary equation to enforce the Kutta-Joukowsky condition. Fi-

nally, the ability of the method to take into account multiple bodies as well as

more general geometries is also illustrated and validated.

78 Chapter 4. Unbounded immersed interface Poisson solver for VPM

4.2 Problem statement

In many applications of computational fluid dynamics, the solution of a Poisson

equation is required. In particular, the operation of computing a velocity field u

associated to a given vorticity field ω = ∇×u is required when working with the

velocity-vorticity formulation of the Navier-Stokes equations for incompressible

flows (∇ · u = 0)

Dω

Dt
∆=

∂ω

∂t
+ u · ∇ω = (∇u) · ω + ν∇2

ω ∇2Ψ = −ω ,

with ν the kinematic viscosity of the fluid. Indeed, the velocity field u can be

linked to the vorticity ω through the above Poisson equation for the stream-

function Ψ, as u = ∇×Ψ and ∇ ·Ψ = 0 (Lorenz’ gauge).

The flow past a non-moving body with boundary ∂Ωb is sketched in Fig. 4.1,

in the 2-D case where Ψ = Ψ êz and ω = ω êz. The flow domain is then Ωf
∆=

R2/Ωb and the boundary conditions are lim|x|→∞ u = U∞ (with U∞ a constant

free stream flow) and u = 0 on ∂Ωb (no-slip condition). The translation of the

no-slip condition into vorticity formulation is not straightforward. Usually, the

Poisson equation is solved with a no-through flow condition on ∂Ωb. This is

actually the core of the present work and we refer to the problem as finding the

potential flow that cancels the through flow induced by the vorticity field (see

also Section 3.2.1). The potential velocity field however still presents a residual

tangential slip velocity at the wall and the way to enforce a no-slip condition

based on this is further detailed in [72, 102] and Section 3.3.

R2

n

t

ω = 0

Ωf

Ωb

Ωcomp

∂Ωb

∂Ωcomp

Figure 4.1: Sketch of the different domains.

4.3. Methodology 79

By abusing the notation slightly, we call u the potential velocity that satis-

fies the no-through flow condition u · n = 0 on ∂Ωb, with n the outward point-

ing normal of Ωf . In 2-D, this is equivalent to saying that the streamfunction

Ψ = Ψ is constant along the boundary ∂Ωb, with Ψ a priori unknown. The

slip velocity generated by the latter condition can be seen as an infinitely thin

vortex sheet γ (interior boundary charge). The degree of freedom associated

with the unknown Ψ is filled by prescribing the circulation Γ ∆=
∮

∂Ωb
γ(x′) dx′.

Moreover, we assume that the vorticity field is compact and completely

included inside the computational domain Ωcomp (with Ωb ⊂ Ωcomp), as shown

in Fig. 4.1, and we extend the solution to Ωb with Ψ = Ψ. By means of

the decomposition Ψ ∆= Ψb + Ψ∞ with Ψ∞ = (U∞ × x) · êz the free stream

contribution, we can formally write the set of equations for the unknown body

contribution Ψb in Ωcomp

∇2Ψb = −ω −
∮

∂Ωb

γ(x′) δ(x− x′) dx′ in Ωcomp (4.1)

Ψb = Ψ−Ψ∞ on ∂Ωb such that

∮

∂Ωb

γ(x′) dx′ = Γ

Ψb = Ψ−Ψ∞ on ∂Ωcomp ,

with Ψ and the outer boundary condition Ψ on ∂Ωcomp both a priori unknown.

Using the free space Green’s function for the 2-D Poisson equation G(x) =
1
2π log(|x|/L) (L is a reference length), the extended solution in R2 reads

Ψ(x) = Ψ∞(x)−
∫

Ωcomp

ω(x′) G(x−x′) dx′−
∮

∂Ωb

γ(x′) G(x−x′) dx′ , (4.2)

where γ is part of the solution and thus also a priori unknown.

The problem statement is written here in the context of the particular case

of potential flows. It nevertheless generalizes to a broader spectrum of applica-

tions, where the total boundary charge is imposed, contrary to the enforcement

of a constant Dirichlet boundary condition on the inner boundary ∂Ωb.

4.3 Methodology

The computation of the solution to the problem stated in Section 4.2 requires

the following two components: an immersed interface approach (IIM) for the

inner boundary condition and a boundary potential method (BPM) for the

80 Chapter 4. Unbounded immersed interface Poisson solver for VPM

unbounded outer boundary condition. The potential flow application requires

a decomposition of the solution in a free stream component Ψ∞ and a body

contribution Ψb, in order to account for the unbounded character of the global

solution. Hence, we have to provide an appropriate treatment of an inner

boundary condition which is a linear function with unknown constant level.

The two approaches IIM and BPM are detailed respectively in Sections 4.3.1

and 4.3.2. The global algorithm is then given in Section 4.3.3.

4.3.1 Immersed interface approach for the interior

boundary

As an example, let us first consider a one-dimensional function f(x) ∆= f (0)(x) ∈
C∞(R\{xα}) and some underlying grid points xq. f(x) and its derivatives

f (k)(x) may be discontinuous in the immersed interface xα ∈ [xi, xi+1), as can

be seen in Fig. 4.2.

h+h−

h

i i + 1

xα

f(x)

Figure 4.2: Sketch of the 1D immersed interface problem: position of the immersed
interface (x = xα, blue cross); irregular points i and i + 1 affected by the correction
term Jα (blue circles); stencil nodes for the uncorrected second derivative at xi (green
squares); stencil nodes for the correction terms J+

α and J−

α (red bullets) and boundary
condition (red cross).

Following [80] or [129] and using generalized Taylor series that are valid

across the interface, a corrected finite difference scheme can still be written at

xi, without affecting the order of accuracy. For the second derivative of f , we

have

f (2)(xi) = R−1 f(xi−1) + R0 f(xi) + R+1

(
f(xi+1)− J+

α

)
+O(h2)

J+
α = [f (0)]α +

h+

1!
[f (1)]α +

(h+)2

2!
[f (2)]α +

(h+)3

3!
[f (3)]α ,

with h+ ∆= xi+1 − xα and [f (k)]α = f (k)(x+
α) − f (k)(x−

α) the jump in the

kth derivative of f(x). For a uniform grid with spacing h ∆= xi+1 − xi, the

4.3. Methodology 81

coefficients {R−1, R0, R+1} correspond to the classical centered second order

scheme {1,−2, 1}/h2. The corrected scheme at xi+1 reads

f (2)(xi+1) = R−1

(
f(xi)− J−

α

)
+ R0 f(xi+1) + R+1 f(xi+2) +O(h2)

J−
α = −[f (0)]α +

h−

1!
[f (1)]α −

(h−)2

2!
[f (2)]α +

(h−)3

3!
[f (3)]α ,

with h− ∆= xα − xi. The nodes i and i + 1 are called irregular in the immersed

interface literature because the uncorrected stencil crosses the interface in both

cases and hence requires the addition of the correction terms J+
α and J−

α . All

nodes whose stencil does not cross the interface are called regular.

The correction terms J+
α and J−

α provide a mean to enforce the boundary

condition at x = xα. Considering the target problem in 2-D, we may identify

one of both regions x < xα and x > xα as the body domain Ωb, depending

on the spatial configuration of the computational domain. Without loss of

generality, x < xα will here represent Ωb. Inside Ωb, f is assumed to be known

and thus also f (k)(x−
α). However outside of Ωb, f is part of the solution. The

derivatives f (k)(x+
α) are therefore computed using one-sided finite differences,

only taking into account stencil nodes inside Ωf (x ≥ xα) and the Dirichlet

boundary condition fα

f (k)(x+
α) = (Sk

0)α fα + (Sk
0)2 f(xi+2) + (Sk

0)3 f(xi+3)

+ (Sk
0)4 f(xi+4) +O(h4−k) ,

which is in agreement with the required accuracy of the corrected scheme. The

point xi+1 has not been included in the scheme for numerical stability reasons

(see Fig. 4.2), as discussed in [80]. For more details about the notations and

the computation of these 1-D schemes, see Appendix A.

Two-dimensional operators, such as the Laplacian ∇2(·), are handled by

correcting the schemes for the derivatives along the different grid directions

individually (dimension splitting approach), i.e. ∂2f/∂x2 and ∂2f/∂y2 are

treated like one-dimensional stencils. The derivative jumps required by the

correction terms are then computed at the intersections of the interface with the

grid lines, which are called control points in the immersed interface literature.

The correction actually widens the stencil compared to the classical 5-point

scheme but the system that has to be solved is still linear, as expected. The

extent of the correction stencils implies some restrictions on the geometry of

82 Chapter 4. Unbounded immersed interface Poisson solver for VPM

the boundary as the one-sided stencil may not cross the boundary again. For

smooth boundaries, it can be prevented by grid refinement.

Similarly to the one-dimensional case, the solution is assumed to be known

inside Ωb. Indeed, according to Eq. (4.1), we have Ψb = Ψ − Ψ∞ inside the

body (keep in mind that the value of Ψ is not known a priori). The solution is

therefore continuous but its derivatives are not.

Hence, the corrected scheme introduces the supplementary unknown Ψ and

adds the terms containing Ψ∞ to the right hand side of the linear system. As a

consequence, one has to complete the system by imposing the total boundary

charge, i.e. the circulation
∮

∂Ωb
γ(x′) dx′ = Γ. Note that the vortex sheet

γ is part of the solution and is not computed explicitly during the solution

procedure, as it is implicitly taken into account by the derivative jumps of

Ψb (the value of γ can be obtained as a post processing step, though; see

Chapter 7).

Yet, prescribing the circulation is carried out straightforwardly after realiz-

ing that the correction terms actually behave like an additional bulk vorticity

field [14]. Indeed, if one gathers all the correction terms Jα,k (i.e. J+
α,k or

J−
α,k) that have to be applied at a certain grid point xij near the interface and

removes the contribution of Ψ∞, one can write the following equation

(
∇2Ψ

)h
ij

= −ωij −
∑

k

(−RkJα,k) ∆= −ωij − (ωγ)ij , (4.3)

with
(
∇2Ψ

)h
ij

the classical 5-point stencil for the Laplacian. ωγ can be equiva-

lently seen as a discrete projection of the singular vortex sheet γ onto the grid

nodes. It is only non-zero in the vicinity of the body interface and it plays a role

similar to the sources of potential velocity computed in [35] and [104]. In those

works, the local accuracy is limited to first order for the no-through flow condi-

tion enforcement, even though it achieves second order, once incompressibility

and the no-slip condition are taken into account. In our case, these additional

source terms are designed in a fashion that is consistent with the numerical

discretization scheme and hence it preserves the second order accuracy up to

the wall.

For a uniform and isotropic grid, the circulation constraint is then:

Γ =

∮

∂Ωb

γ(x′) dx′ =

∫

Ωcomp

ωγ(x′) dx′ ≃
∑

i,j

(ωγ)ij h2 , (4.4)

with the definition ωγ(x) ∆=
∮

∂Ωb
γ(x′) δ(x − x′) dx′ in the continuous case.

4.3. Methodology 83

This approach shows that it can be easily generalized for the flow past multiple

bodies because we introduce one equation and one unknown per body, similarly

to [14].

The resulting system is solved using the library HYPRE [46, 45]; in particu-

lar the GMRES solver is combined with an algebraic multigrid preconditioning.

The tool developed in this section hence allows to solve the problem Eq. (4.1),

provided the outer boundary condition on ∂Ωcomp is known. Obtaining this

boundary condition is the subject of the next section.

4.3.2 James-Lackner algorithm for the outer boundary

The aim of this Section is to compute a field with outer boundary conditions

that are compatible with the solution of a Poisson equation in unbounded do-

main. The algorithm presented here follows that of Miller [91] and is based on

the ideas introduced by James [62] and Lackner [74]. If we consider again the

potential flow problem Eq. (4.1), the difference with Miller’s problem equations

comes from the boundary condition at the interior boundary ∂Ωb. Miller im-

poses an a priori known constant Dirichlet condition whereas, in our case, we

enforce the circulation. The modifications of the algorithm are given hereafter.

In the spirit of the James-Lackner algorithm, let us introduce the additional

decomposition

Ψb
∆= Ψ0 + δΨb ,

where Ψ0 is the solution in Ωcomp of the following problem with homogeneous

outer Dirichlet boundary conditions

∇2Ψ0 = −ω −
∮

∂Ωb

γ0(x
′) δ(x − x′) dx′ in Ωcomp (4.5)

Ψ0 = Ψ0 −Ψ∞ on ∂Ωb such that

∮

∂Ωb

γ0(x
′) dx′ = Γ

Ψ0 = 0 on ∂Ωcomp .

This problem can be solved straightforwardly using the tools developed in

Section 4.3.1, keeping in mind that both γ0 and Ψ0 are part of the solution.

However, even if the vortex sheet γ0 generated on ∂Ωb has the correct integral

value Γ, it is not equal to the solution γ, due to the fact that the outer boundary

conditions are different from those of the problem Eq. (4.1) (for the same reason

84 Chapter 4. Unbounded immersed interface Poisson solver for VPM

we also have Ψ0 6= Ψ). By the minimum-maximum principle of the Laplace

equation, we also have Ψ0 = 0 outside of Ωcomp. As a consequence, an artificial

vortex sheet γcomp appears on ∂Ωcomp and the solution of problem Eq. (4.5),

also valid in R2, reads

Ψ0(x) = −
∫

Ωcomp

ω(x′) G(x− x′) dx′ −
∮

∂Ωb

γ0(x
′) G(x− x′) dx′

−
∮

∂Ωcomp

γcomp(x
′) G(x− x′) dx′ .

In order to understand the nature of γcomp, we can rewrite the latter equation

for x outside of Ωcomp (or equivalently on ∂Ωcomp)

∮

∂Ωcomp

γcomp(x
′) G(x − x′) dx′ =−

∫

Ωcomp

ω(x′) G(x− x′) dx′

−
∮

∂Ωb

γ0(x
′)G(x− x′) dx′ .

This shows that the contributions of ω and γ0 to the far-field solution Ψ are

recovered by the artificial vortex sheet γcomp. The only far-field contribution

that is missing is the vortex sheet γ− γ0 that complements γ0 in order to yield

the vortex sheet solution γ.

Indeed, considering now Eq. (4.2) and the definition of Ψb, the required

correction inside Ωcomp reads

δΨb(x) =

∮

∂Ωcomp

γcomp(x
′) G(x− x′) dx′ −

∮

∂Ωb

(γ − γ0)(x
′) G(x − x′) dx′ .

By definition, δΨb = Ψ−Ψ0 on ∂Ωb and the total circulation of the correction

sheet (γ − γ0) equals zero.

The first term of the correction δΨb is easily accounted for. Indeed, the

value of γcomp can be deduced from Ψ0, using Green’s third identity written in

Ωcomp, as shown in [91]:

γcomp(x) = ∇Ψ0(x) · n =
∂Ψ0

∂n
,

with n the normal pointing outwards of Ωcomp.

The second term in δΨb, consisting of the vortex sheet correction (γ − γ0),

is more difficult to handle. In absence of body in the domain, this term simply

vanishes and we recover the original two-step James-Lackner algorithm [62, 74].

4.3. Methodology 85

In the presence of a body, we need to iterate because the vortex sheet γ is part

of the final solution Ψb, as explained in [91]:

Ψ
(k+1)
b (x) = Ψ0(x) + δΨ

(k)
b

δΨ
(k)
b

∆=

∮

∂Ωcomp

γcomp(x
′) G(x − x′) dx′ (4.6)

−
∮

∂Ωb

(γ(k) − γ0)(x
′) G(x− x′) dx′ .

In Section 4.3.3, we explain how to perform this iteration and how to evaluate

the contribution of (γ(k) − γ0) in the framework of the immersed interface ap-

proach. Briefly, we need to evaluate the convolutions in δΨ
(k)
b (see Eq. (4.6))

on the outer boundary ∂Ωcomp, based on Ψ0 and the previous solution Ψ
(k)
b .

Once the outer boundary condition is known (Ψ
(k+1)
b = δΨ

(k)
b on ∂Ωcomp), we

can compute the next solution Ψ
(k+1)
b (x) inside Ωcomp. Note that the convolu-

tions from Eq. (4.6) are not explicitly evaluated inside Ωcomp, as the following

equivalent Poisson problem is solved instead, using the tools from Section 4.3.1:

∇2Ψ
(k+1)
b = −ω −

∮

∂Ωb

γ(k+1)(x′) δ(x− x′) dx′ in Ωcomp (4.7)

Ψ
(k+1)
b = Ψ

(k+1) −Ψ∞ on ∂Ωb such that

∮

∂Ωb

γ(k+1)(x′) dx′ = Γ

Ψ
(k+1)
b = δΨ

(k)
b on ∂Ωcomp .

Again, one should observe here that it is not required to know γ(k+1) (nor

Ψ
(k+1)

) in order to solve Eq. (4.7), as it is obtained as a part of the solution,

along with Ψ
(k+1)
b (imposing the outer boundary condition, the circulation and

the vorticity is sufficient).

As a side note, the current approach enforcing the circulation amounts to

impose the value of the monopole, leaving the iteration on the higher order

multipole terms. No convergence break down was observed, even when the

outer boundary of the computational domain is close to the body. This is

in contrast with the under relaxation required when trying to impose Ψ, as

referred in [91].

4.3.3 Algorithm

Consider a uniform 2-D node-centered grid defined over the rectangular do-

main [x0, xN] × [y0, yM] with N + 1 points in the x direction and M + 1

86 Chapter 4. Unbounded immersed interface Poisson solver for VPM

points in the y direction. Thus ∆x = (xN − x0)/N and ∆y = (yM − y0)/M .

The one-dimensional explicit stencil for the second derivative at x is then

{Rx
−1, R

x
0 , Rx

+1} = {1,−2, 1}/(∆x)2; the stencil for y is similar. The algo-

rithm to solve the potential flow problem Eq. (4.1) is following [91], taking into

account the modifications introduced in Section 4.3.2. There are essentially

three types of operations involved in this algorithm (see also Fig. 4.3):

• Ψ = solve(Ψcomp,−ω, Γ) : The immersed interface tools of Section 4.3.1

are used to obtain the discrete solution of ∇2Ψ = −ω with prescribed cir-

culation Γ and satisfying the outer boundary conditions Ψ(x) = Ψcomp(x)

on ∂Ωcomp.

• γbdy = extractCharge(Ψ) : This operation extracts a boundary charge

γbdy from a discrete field Ψ.

• Ψcomp = conv(γbdy) : This operation computes a new outer boundary

condition on ∂Ωcomp by means of a convolution between the free space

Green’s function and the boundary charge γbdy (see Eq. (4.6)).

The algorithm is then performed as follows:

1. Homogeneous Dirichlet solution : Solve the problem Eq. (4.5) for

Ψ0 with homogeneous outer Dirichlet boundary conditions on ∂Ωcomp :

Ψ0 = solve(0,−ω, Γ)

2. Outer sheet : Compute the artificial source γcomp = ∂Ψ0/∂n on ∂Ωcomp.

This is done using a one-sided fourth order finite difference stencil, as in

[90] (‘FD4’ in Fig. 4.3) :

γcomp = extractCharge(Ψ0)

3. Initial BC correction : This is the first step of the iterative approach

(k = 0). The vortex sheet γcomp induces a new outer boundary condition

and, as can be seen in Eq. (4.6), it is given by

∀x ∈ ∂Ωcomp : δΨ
(0)
b (x) ∆=

∮

∂Ωcomp

γcomp(x
′) G(x− x′) dx′ .

According to the above observation made about γcomp, this step computes

the outer boundary condition induced by the far-field contributions from

ω and γ0. One should also observe that the second convolution from

4.3. Methodology 87

Eq. (4.6) cannot yet be evaluated, as only γ0 is available at this point.

The corresponding algorithmic operation is then

δΨ
(0)
b = conv(γcomp)

Uniform intensity panels in conjunction with fast multipole summation

techniques are used for the computation of the convolution (‘panels’ in

Fig. 4.3). The panels are centered on the grid nodes, i.e. for the upper

boundary y = yM at the grid node xi we have a panel defined between

xi −∆x/2 and xi + ∆x/2 with an intensity given by (∂Ψ0/∂n)i,M .

We now start the iteration with k = 1.

4. Non-homogeneous Dirichlet solution : Eq. (4.7) is now solved with

the outer boundary condition based on the vortex sheet extracted from

the previous solution. The algorithmic operation in Fig. 4.3 is

Ψ
(k)
b = solve(δΨ

(k−1)
b ,−ω, Γ)

5. Inner sheet : A new vortex sheet (γ(k) − γ0) is generated on ∂Ωb and,

following the observation made in Eq. (4.3), it is evaluated by using the

equivalent bulk field ωγ(k)−γ0
extracted from Ψ

(k)
b − Ψ0 (‘bulk sheet’ in

Fig. 4.3). It can be computed efficiently as it only involves the irregular

points of the domain

ωγ(k)−γ0
= extractCharge(Ψ

(k)
b −Ψ0)

6. BC correction : The new boundary charge on ∂Ωb requires an update

of the outer boundary condition and the convolution in Eq. (4.6) is com-

puted using fast multipole summation techniques with singular particles

to represent the bulk field ωγ(k)−γ0
(‘particles’ in Fig. 4.3). We thus

evaluate the following equation on ∂Ωcomp :

δΨ
(k)
b (x) = δΨ

(0)
b (x) −

∮

∂Ωb

(γ(k) − γ0)(x
′) G(x− x′) dx′ .

The operation in Fig. 4.3 is

δΨ
(k)
b = δΨ

(0)
b − conv(ωγ(k)−γ0

)

7. Convergence check : When the error ‖Ψ(k)
b − Ψ

(k−1)
b ‖2 is lower than

a prescribed tolerance, the procedure stops (‘convergence’ in Fig. 4.3),

else k := k + 1 and we go back to step 4.

88 Chapter 4. Unbounded immersed interface Poisson solver for VPM

1. Ψ0 = solve(0,−ω, Γ)

2. γcomp = extractCharge(Ψ0)

FD4
3. δΨ

(0)
b = conv(γcomp)

panels

4. Ψ
(k)
b = solve(δΨ

(k−1)
b ,−ω, Γ)

5. ωγ(k)−γ0
= extractCharge(Ψ

(k)
b − Ψ0)

bulk sheet

6. δΨ
(k)
b = δΨ

(0)
b − conv(ωγ(k)−γ0

)
particles

Ψ0

Ψ0 −Ψ∞ on ∂Ωb

Ψ0 = 0 on ∂Ωcomp

γcomp = ∂Ψ0

∂n
δΨ

(0)
b

k = 0

k := k + 1

Ψ
(k)
b

Ψ
(k) −Ψ∞

convergence

ωγ(k)−γ0

+Ψ∞

δΨ
(k−1)
b

δΨ
(k)
b

Figure 4.3: Sketch of the different computational steps of the algorithm.

4.4. Numerical results 89

4.3.4 Possible extension to 3-D problems

In the present section, we discuss the modifications required for an extension to

three dimensions. We consider a simply connected domain (i.e. without holes).

Hence the potential flow solution does not have circulation. We can still use

the Helmholtz decomposition for the velocity field

u = ∇×Ψ−∇φ .

The first term is used to account for the contribution of free vorticity ω within

the flow, if there is any; it is obtained by solving

∇2Ψ = −ω ,

with unbounded flow condition on the outer boundary of the computational

domain. The second term is used to enforce the no-through flow condition at

the wall; it is obtained by solving

∇2φ = 0

with the boundary condition

u · n = (∇×Ψ) · n− ∂φ

∂n
= uwall · n .

This, in fact, is the procedure that was followed by [104]. The present method-

ology could be used to solve the second problem. This scalar equation for φ is

the counterpart of the scalar problem we solved in 2-D (for Ψ). However, im-

posing a Neumann boundary condition differs from the present 2-D approach

enforcing a Dirichlet condition. The way to deal with this issue is explained

in Chapter 5, where the aim is to impose a flux condition for a diffusion equa-

tion. Since we use 1-D correction stencils for the immersed interface part of

the method, the extension to 3-D would be otherwise relatively simple.

4.4 Numerical results

The present approach is validated for 2-D potential flows. In the framework of

sharp-interface capturing methods, a similar study has already been performed

in [12, 11], where the unsteady 3-D inviscid flow around self-propelled fish-like

90 Chapter 4. Unbounded immersed interface Poisson solver for VPM

bodies was considered, using the HCIB method in velocity-pressure formulation

from [54]. This methodology provides a specific treatment for inviscid flows,

handling the no-through flow condition using an extrapolation of the tangential

velocity.

First, we present the results for the potential flow past a cylinder, for which

the analytical solution is known. A convergence study is performed. The

method is also compared to the vortex panel method. Then, the added mass

coefficient of an elliptical cylinder is computed and the order of convergence

of the error is assessed for different aspect ratios of the cylinder. The flow

past a cusped airfoil is also considered and we develop an implementation of

the Kutta-Joukowsky condition that is consistent with the present framework.

Finally, the method is illustrated and validated in the case of the flow past

multiple bodies. For the remainder of the text we call Ψe the exact solution of

the problem.

4.4.1 Grid convergence study for the potential flow with

circulation past a cylinder

The streamfunction Ψe for the potential flow with circulation Γ past a cylinder

of radius R (diameter D) is given by

Ψe(r, θ) = U∞

(
1− R2

r2

)
r sin(θ − α)− Γ

2π
log
(r

R

)
,

where U∞ is the free stream velocity magnitude with an angle of attack α

with respect to the x-axis. We set here Γ = 0.5 (4πU∞R) and α = 0° (see

Fig. 4.4). The solution is computed on the domain [−D; D] × [−D; D], using

a grid (N + 1) × (N + 1), thus defining a mesh size h ∆= ∆x = ∆y = 2D/N .

As the streamfunction is defined up to a constant, we compute the error field

ǫ ∆= (Ψ − Ψ) − Ψe. We consider the norms ǫ∞
∆= ‖ǫ‖∞ ∆= maxΩcomp

|ǫ| and

ǫ2
∆= ‖ǫ‖2 ∆= (1/D2

∫
Ωcomp

ǫ2 dx)1/2. For two different mesh sizes hn−1 and

hn, the observed convergence order for a given norm ‖ · ‖q is then (rq)n
∆=

log((ǫq)n/(ǫq)n−1)/ log(Nn−1/Nn). Results for the convergence study are given

in Table 4.1. It can be seen that the accuracy of the method is asymptotically

second order in both norms.

In order to allow a comparison with a vortex panel method, we use panels

of approximate length h with uniform and linear intensity discretization, which

are respectively first and second order methods. For panels with uniform inten-

4.4. Numerical results 91

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x/D

y/
D

Figure 4.4: Computed streamlines for the flow past a cylinder with Γ =
0.5 (4πU∞R), using N = 50. We show, on purpose, a case with low numerical
resolution. Yet, it is seen that the numerical solution is already quite good.

n N ǫ∞ r∞ ǫ2 r2

1 25 4.196586× 10−3 3.367888× 10−3

2 50 1.309620× 10−3 1.68 9.520453× 10−4 1.82

3 100 3.471269× 10−4 1.92 1.740897× 10−4 2.45

4 200 9.194994× 10−5 1.92 5.641887× 10−5 1.63

5 400 2.380289× 10−5 1.95 1.402193× 10−5 2.01

6 800 6.161394× 10−6 1.95 3.464592× 10−6 2.02

Table 4.1: Grid convergence study for the potential flow around a cylinder on a grid
N × N using the present approach.

sity, we enforce zero tangential velocity in the center and just below the panel.

For panels with linearly varying intensity, we enforce zero normal velocity in

the center of each panel. In addition, we supply the constraint about the global

circulation. The panel solution provides the spatial evolution of the intensity

along the panels and, as a post processing step, the associated solution field is

computed on the same grid as was previously defined for the present method.

Again the error is computed by subtracting from the solution the stream func-

tion averaged over all panels. Grid convergence results for both uniform and

92 Chapter 4. Unbounded immersed interface Poisson solver for VPM

linear panels, as well as for the present method, are given in Fig. 4.5(a) (ǫ2)

and in Fig. 4.5(b) (ǫ∞). The level of the error for the present approach is found

to be similar to that obtained using linear panels. We stress again that the

advantage here is that the representation of the boundary is consistent with

the underlying finite difference stencil.

25 50 100 200 400 800
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

ǫ 2

(a)

25 50 100 200 400 800
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

ǫ ∞

(b)

Figure 4.5: Grid convergence study on ǫ2 (a) and ǫ∞ (b) for the potential flow
with circulation past a cylinder: present approach (thin solid), uniform panels (thin
dashed), linear panels (thin dash-dotted), first order slope (thick dashed) and second
order slope (thick solid).

4.4. Numerical results 93

4.4.2 Added mass for an elliptical cylinder without

circulation

Another interesting point is the comparison of the numerically computed added

mass with its theoretical value in the case of a non-lifting elliptical cylinder.

According to [110], when Γ = 0, the linear impulse per unit length of the fluid

can be expressed as

If = ρ

∫

Ωf

u dx = ρ

∫

R2

u dx− ρ

∫

Ωb

u dx

= ρ

∫

R2

x× (ω êz) dx−M Ub ,

with ρ the fluid density, M ∆= ρ
∫
Ωb

dx the mass per unit length of the “pseudo

fluid inside the body” and Ub the body velocity. The last equation assumes

that we work in a frame of reference that is stationary with respect to the fluid

and that the pseudo fluid inside the body has a velocity equal to Ub (ω = 0

inside Ωb, as the body does not rotate here).

More precisely, for a cylinder that is initially at rest, we consider the in-

crement of the fluid linear impulse per unit length δIf due to an impulsive

acceleration δUb towards the left (here, the notation δ(·) must not be confused

with that used for the decomposition Ψb
∆= Ψ0 + δΨb from Section 4.3.2). The

acceleration generates a vortex sheet increment (δγ êz), which induces a veloc-

ity field δu. We look for the so-called added mass per unit length Ma of the

fluid next to the wall that virtually increases the mass Mb (per unit length) of

the body during the acceleration. If F is the force per unit length accelerating

the body and the surrounding fluid during a small time increment δt, we have,

if δIf is assumed to be aligned with δUb

Fδt = Mb δUb + δIf
∆= (Mb + Ma) δUb .

And thus

Ma δUb = δIf = ρ

∮

∂Ωb

x× (δγ êz) dx−M δUb .

The added mass coefficient can then be computed by further assuming that

δγ êz is proportional to δUb. For the numerical computation, we use again the

bulk vorticity field increment ωγ (see Eq. (4.3)) and we set δUb = −δUb êx

(α = 0°). For an elliptical cylinder aligned with the reference axes and with

94 Chapter 4. Unbounded immersed interface Poisson solver for VPM

semi axis Rx and Ry, the theoretical added mass coefficient for an acceleration

along the x-axis is M th
a = ρπR2

y [95].

The computational domain is [−L; L] × [−L; L] and the grid (N + 1) ×
(N + 1). The error ǫa

∆= |Ma − M th
a | and its convergence order (ra)n

∆=

log((ǫa)n/(ǫa)n−1)/ log(Nn−1/Nn) are compared for different aspect ratios in

Fig. 4.6 (Dx/Dy = 1/4, 1/2, 1, 2, 4). We can again observe a second order con-

vergence for this diagnostic but the level of the error increases with decreasing

ratio Dx/Dy. Two extrema appear in the vortex sheet at the top and at the

bottom of the ellipse precisely where the local curvature increases. As expected,

a decreasing ratio Dx/Dy makes it more challenging to capture the increasingly

curved vortex sheet.

25 50 100 200 400 800

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

N

ǫ a

Figure 4.6: Grid convergence study on the added mass error ǫa for an elliptical
cylinder: Dx/Dy = 1/4 (thick dashed), 1/2 (thick dash-dotted), 1 (thin solid), 2 (thin
dash-dotted), 4 (thin dashed) and second order slope (thick solid).

4.4.3 Grid convergence study for the potential flow with

circulation past an airfoil

We consider here a symmetric Joukowsky airfoil. The conformal mapping that

maps the circle of radius R (diameter D) in the complex plane Z ∆= X + iY

onto the airfoil in the plane z ∆= x + iy is

z(Z) = Z +
(R− ε)2

(Z − ε)
.

4.4. Numerical results 95

The streamfunction of the flow past the airfoil with an angle of attack α is

Ψe(x, y) = im{F (Z(z))}, with

F (Z) = U∞

(
Ze−iα +

R2

Z
eiα

)
+

Γ

2πi
log

(
Z

R

)
.

The angle of attack is α = 10°. The domain is a square defined by [−L; L]×
[−L; L] (with a computational grid (N + 1)× (N + 1)). The chord is given by

c/L = 1.2 and the thickness parameter by ε/c = 0.035. The radius R can be

deduced from ε. The airfoil and the streamlines of the flow are displayed in

Fig. 4.7.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x/L

y/
L

Figure 4.7: Computed streamlines for the flow past an airfoil with α = 10°, using
N = 50 and imposing numerically the Kutta-Joukowsky condition (with a 2-D stencil
of order p = 1). The method is seen to perform already quite well despite the low
numerical resolution.

One important feature of the Joukowsky airfoil is the cusp at its trailing

edge. Setting the circulation to Γe = −4πU∞R sin α ensures that the velocity

at the trailing edge remains finite (Kutta-Joukowsky condition). The velocity

vector is then also aligned with the trailing edge. Any other choice of Γ leads

to an infinite velocity at this point, or equivalently |∂Ψ/∂n| → ∞ with n a

vector aligned with the trailing edge. This observation also holds for trailing

edges with a non-zero angle.

96 Chapter 4. Unbounded immersed interface Poisson solver for VPM

Numerically, as we do not know the circulation a priori, we have to re-

place Eq. (4.4) and write a new equation that eventually enforces the Kutta-

Joukowsky condition:

∂Ψ

∂n

∣∣∣∣
up

TE

+
∂Ψ

∂n

∣∣∣∣
down

TE

= 0 , (4.8)

where the subscript TE refers to the trailing edge and where the superscripts

up and down stand for an evaluation of the normal derivative on the two

respective sides of the trailing edge (see Fig. 4.8; contrary to previously, the

normal vectors are here defined to be pointing outward of Ωb).

Eq. (4.8) means that the tangential velocity components above and below

the trailing edge are equal and thus aligned with the trailing edge (note that

this is also what is done in vortex panel methods). As the present approach

is iterative (the linear solver and the boundary potential method are both

iterative), the circulation changes at each iteration step and eventually adopts

the correct value, after global convergence. Before reaching convergence, the

intermediate solutions provide an infinite perpendicular velocity component at

the trailing edge, yet the tangential velocity component remains regular on both

sides of the trailing edge and Eq. (4.8) is valid. The circulation Γ satisfying

Eq. (4.8) can be computed afterwards using Eq. (4.4).

Eq. (4.8) is discretized using two-dimensional finite difference stencils (for

the two normal derivatives on both sides of the trailing edge) because xTE

does not necessarily lie on a grid segment or a grid node. The stencils for the

first derivatives can be computed at an arbitrary order p by means of two-

dimensional Taylor series. Therefore Np different grid nodes (Np
∆= 1

2 (p +

1)(p + 2)− 1) have to be chosen in addition to the value Ψ at the trailing edge

point xTE (this ensures that the envelope of the data locations is convex for

the interpolation procedure). The coefficients of the stencil are then obtained

as the solution of a linear system that is computed using Taylor series around

xTE and evaluated at the given grid node locations. The observation made

previously about the singularity leads to choose grid nodes in the region just

upstream of xTE , in order not to include the singularity. However, the choice of

the Np grid nodes is constrained by the fact that the coefficient matrix should

not be rank deficient. For high values of p, choosing the nearest nodes to

xTE often leads to rank deficiency. The current procedure to compute a valid

stencil consists in generating random sets of Np grid nodes and checking the

rank of the associated matrix (for a set of valid stencils, the one minimizing

4.4. Numerical results 97

the leading error term is chosen). Note that one-dimensional stencils could

also have been used, by adopting a strategy similar to the one that will be

developed in Chapter 5.

As an example, two of the resulting stencils for p = 2 and p = 4 are shown

in Fig. 4.8. Fig. 4.7 shows the solution obtained using this procedure with p = 1

on a grid N = 50. Even if both the resolution and the order of the equation

to enforce the Kutta-Joukowsky condition are quite low, one can observe that

the computed streamlines are nevertheless already quite close to those of the

analytical solution.

0.63 0.64 0.65 0.66 0.67 0.68 0.69

−0.02

−0.01

−0.03

0

0.01

0.02

0.03

nup

ndown

xTE
12

34

5

x/L

y
/
L

Figure 4.8: Stencil used for the discretization of Eq. (4.8) (zoom on the trailing edge
area). Grid nodes used for p = 2 (crosses) and for p = 4 (bullets). As an illustration,
the p = 2 weights to compute the derivative ∂

∂y
(·) are w1...5 = {0,−3, 1

2
, 9

2
,− 1

2
}/∆y

and wTE = −
P5

k=1 wk.

The ability of the method to capture this geometric feature, as well as

to predict the correct circulation is tested here using a grid convergence study.

The trailing edge is placed exactly on a grid line (y = 0) to ensure that irregular

points are generated in that area. Moreover, for the computations at different

resolutions N , we slightly translate the airfoil along the x-axis in order to keep

xTE equidistant from two consecutive grid nodes on the axis y = 0. This allows

to keep exactly the same stencil for every resolution. Results are shown for ǫ∞

in Fig. 4.9(a) and for ǫΓ
∆= |Γ − Γe| in Fig. 4.9(b), also comparing different

values for the order p of the stencil. Γ is simply computed as a post processing

98 Chapter 4. Unbounded immersed interface Poisson solver for VPM

step using Eq. (4.4). The accuracy of the method is here only first order for

both errors, even for higher order stencils (increasing p does not improve the

asymptotic convergence rate). This is because the immersed interface stencil

corrections associated to the nodes next to the trailing edge are not computed

accurately. Indeed, as long as the circulation is not equal to Γe, the gradient of

the solution is infinite at xTE and so is the jump in the first derivative, which is

clearly not taken into account in the immersed interface approach. The trailing

edge would need a special treatment in order to improve the convergence order.

We leave this as a subject for further investigation.

50 100 200 400 800
10

−5

10
−4

10
−3

10
−2

N

ǫ ∞

(a)

50 100 200 400 800
10

−4

10
−3

10
−2

10
−1

N

ǫ Γ

(b)

Figure 4.9: Grid convergence study on ǫ∞ (a) and ǫΓ (b) for the potential flow with
circulation past an airfoil: p = 4 (thick dashed), p = 2 (thin dashed), p = 1 (thin
dash-dotted) and first order slope line (thick solid).

4.4. Numerical results 99

4.4.4 Potential flow past multiple bodies

We now consider the flow with an angle of attack α = 10° past three bodies

defined on a domain [−L; L]× [−L; L], and a grid (N +1)×(N +1). The bodies

are a pentagonal shape (body 1), a triangular shape (body 2) and an ellipse

(body 3). Body 1 has a parametric polar representation with a radius given by

r(θ) = Rp,1(1+0.035 sin(5(θ−15°))), θ being the angle defined around the point

(0.3L; 0.45L) and Rp,1/L = 0.3. Its circulation is Γ1 = 0.5 (4πU∞Rp,1). The

polar equation for body 2 is r(θ) = Rp,2(1+0.1 sin(3(θ−50°))), θ being the angle

defined around the point (0.4L; 0.4L) and Rp,2/L = 0.2 (Γ2 = −4πU∞Rp,2).

The ellipse is centered in (−0.4L;−0.3L), it is tilted by an angle of 45° in the

clockwise sense and has a semi-major axis Rmaj/L = 0.4 and a semi-minor

axis Rmin/L = 0.2. The ellipse is non lifting (Γ3 = 0). Even if some parts of

the body geometries are not convex, it is nevertheless guaranteed here that the

one-sided correction stencils at the different irregular points do not cross the

boundary. The streamlines of the potential flow are given in Fig. 4.10.

∆Ψ12

∆Ψ13

−1
−1

−0.5

−0.5

0

0

0.5

0.5

1

1

x/L

y
/
L

body 1

body 2
body 3

Figure 4.10: Computed streamlines for the flow past multiple bodies, using N = 400.

In order to validate the results, the mass flow rates between the bodies

are computed: ∆Ψ12
∆= Ψ1 − Ψ2 and ∆Ψ13

∆= Ψ1 − Ψ3 (Ψm is the constant

streamfunction value for body m, see also Fig. 4.10). These values are compared

for different grid sizes N with the reference results obtained using a highly

refined vortex panel method (approximately 4500 linear panels in total, the

100 Chapter 4. Unbounded immersed interface Poisson solver for VPM

equivalent of twice the mesh resolution of the finest grid used for the present

approach computation). A mesh convergence study is performed in Fig. 4.11

and one can observe again a second order convergence for the errors ǫf,12
∆=

|∆Ψ12 −∆Ψref
12 | and ǫf,13

∆= |∆Ψ13 −∆Ψref
13 |.

50 100 200 400 800
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

ǫ f
,1

2
,
ǫ f

,1
3

Figure 4.11: Grid convergence study on mass flow rates for the potential flow with
multiple bodies: ǫf,12 (thin solid), ǫf,13 (thin dashed) and second order slope (thick
solid).

4.5 Conclusion

A two-dimensional second order finite difference solver has been presented for

Poisson equations in unbounded domain and including irregular boundaries.

The method has been developed with the specific goal of computing the po-

tential flow around multiple bodies with compact vorticity support. A grid

convergence study has been performed based on the analytical solution of the

potential flow past a cylinder. This study confirms the claimed accuracy. The

prediction of the added mass coefficient of an elliptical cylinder leads to the

same conclusion concerning the order of convergence. A comparison with the

vortex panel method has also been performed (uniform and linear panels) and

the observed level of the error norms is found to be similar to those obtained

with linear panels. The method has also been validated for the flow past multi-

ple bodies. The previously mentioned cases allow the imposition of an arbitrary

circulation for the flow around each body. For the flow past cusped airfoils,

the circulation that satisfies the Kutta-Joukowsky condition is unique. There-

4.5. Conclusion 101

fore, a way to enforce the Kutta-Joukowsky condition has been developed, that

leads, at convergence, to the proper circulation. However, the global method is

then only first order accurate, because the intermediate steps do not have the

proper circulation. Finally, the procedure for a possible extension to solving

3-D potential flow problems was also given.

The aim of this work is to integrate this type of solver inside a viscous vortex

particle-mesh solver, as will be seen in Chapter 7. In this method, one step

consists in solving a Poisson equation in order to recover, from a given vorticity

field, the unbounded velocity field that respects a no-through flow condition at

the wall. One way to do this is to combine a multipole-based vortex panel solver

with a fast finite difference Poisson solver, as done in [83]. One of the drawbacks

is then the lack of full consistency between the vortex panel solver and the finite

difference discretization. The present approach treats the wall condition in a

fashion that is more consistent with the finite difference stencil. Furthermore,

the solution would then no longer be a combination of two different approaches,

as everything would be computed on the grid. The accurate evaluation of the

vorticity flux emanating from the wall and its diffusion into the surrounding

fluid (see [102]), all also done on the grid, is explained in Chapter 5. The

required modifications for the underlying particle-mesh interpolation are given

in Chapter 6 and the immersed interface-enabled vortex particle-mesh solver is

detailed and validated in Chapter 7.

102 Chapter 4. Unbounded immersed interface Poisson solver for VPM

Chapter 5

Development of an

immersed interface

parabolic solver

In the immersed interface method developed in this thesis, the diffusive term

of the Navier-Stokes equations is also computed on the grid, using jump-

corrected finite differences, similarly to what was done for the Poisson solver.

The direction-splitting approach we have used so far easily takes into account

Dirichlet-type boundary conditions (see Chapter 4). The methodology has to

be extended to allow for Neumann boundary conditions, so as to be able to

apply a no slip boundary condition at the wall. Indeed, this condition requires

the enforcement of a flux, which is proportional to the remaining tangential

slip velocity after the convective part of the time-stepping (see Chapter 3).

The aim of this chapter is first to develop a stencil for Neumann boundary

conditions, and secondly, to study its stability properties in the framework of

the diffusion equation, in one and two dimensions.

5.1 One-dimensional case

The diffusion equation for ω(x, t) in one dimension and defined in the domain

x ∈ [a, b] reads

∂ω

∂t
= ν

∂2ω

∂x2
,

with prescribed boundary conditions at the two boundaries a and b.

104 Chapter 5. Immersed interface parabolic solver for VPM

The discretization of the second derivative in space is performed using sec-

ond order centered finite differences. The boundary conditions are easily en-

forced if the underlying grid is defined in a way that the boundaries a and

b coincide with grid nodes. However, if the latter condition is not fulfilled,

an immersed interface stencil has to be provided and the tools developed in

Section 4.3.1 have to be reused.

Let us assume that the grid is defined as xk = x0 + k · h (k = 0, ..., N) and

xN = b (the right boundary coincides with the last grid node), whereas the left

boundary a ∈ (xi, xi+1] is immersed in the grid (x0 < a), as shown in Fig. 5.1.

For x < a, we simply set ω(x, t) = 0, ∀t (this is equivalent to solving the

diffusion equation in the domain [x0, a) with homogeneous Dirichlet boundary

conditions). Without loss of generality, we also set the right boundary condi-

tion to ω(b, t) = ωb(t). A Dirichlet-type boundary condition at x = a will be

expressed as ω(a, t) = ω
(0)
a (t) and a Neumann-type BC as −ν ω(1)(a, t) = qa(t),

or equivalently as ω
(1)
a (t) ∆= −qa(t)/ν. In order to make the link with the tar-

get problem in fluid dynamics we wish to solve, the domain x < a represents

the body, where the vorticity ω is supposed to be zero (if the body is at rest)

and x ≥ a represents the flow domain. The equation is solved in the whole

domain [x0, xN = b] (flow and body), just as was the case for the Poisson solver.

h+h−h

i i + 1

body flow
x0

x = a

xN = b

ωb(t)

ωa(t)

ω
(1)
a (t)

l = 0

l = 1

Figure 5.1: Sketch of the 1D immersed interface problem : position of the immersed
interface (x = a, blue cross); irregular points i and i + 1 affected by the correction
term (blue circles); stencil for the second derivative at xi that crosses the interface
(green squares); two possible stencils for the correction terms (l = 0 or l = 1, red
bullets).

5.1. One-dimensional case 105

Knowing that the solution is discontinuous at x = a, we choose the following

jump-corrected scheme for the discretization of the second derivative at xi

ω
(2)
i =

1

h2

(
ωi−1 − 2 ωi + (ωi+1 − J+

a)
)

+O(h2)

J+
a = [ω(0)]a +

h+

1!
[ω(1)]a +

(h+)2

2!
[ω(2)]a +

(h+)3

3!
[ω(3)]a , (5.1)

with ω
(k)
i

∆= ω(k)(xi), ωi = ω
(0)
i

∆= ω(xi) and h+ ∆= xi+1 − a. For the sake

of clarity, the notation for the time variable t is omitted here. The second

derivative at xi+1 is handled similarly using h− ∆= a − xi (instead of h+) at

J−
a , as discussed in Chapter 4 and [80]. The terms J+

a and J−
a provide us a

mean to enforce the boundary condition at x = a. The derivative jumps can

be expressed as

[ω(k)]a = ω(k)(a+)− ω(k)(a−) = ω(k)(a+) ,

since ω(k)(a−) = 0 (the solution inside the body is zero). If the body was on

the right hand side (x > a), we would have had [ω(k)]a = −ω(k)(a−). The

derivatives of ω are computed using one-sided finite differences, only taking

into account the solution on the flow side (x ≥ a) and the boundary condition.

We thus have

ω(k)(a+) = (Sk
q)a ω(q)

a +

3∑

p=1

(Sk
q)p ωi+p+l +O(h4−k) ∀k = 0, ..., 3 ,

with q = 0 (Dirichlet) or q = 1 (Neumann) and l is a shift parameter (see

Fig. 5.1). When k = q, the coefficients simplify to (Sq
q)a = 1 and (Sq

q)p =

0, by definition. For a more detailed discussion about this type of scheme,

including their computation and the associated leading error term analysis,

refer to Appendix A.

The time derivative is handled using a classical ODE time integration

scheme; e.g., when using the first order Euler scheme (= Runge-Kutta scheme

of first order)

ωn+1
i = ωn

i + ν∆t
(
ω

(2)
i

)n

. (5.2)

The classical stability analysis based on Fourier modes (e.g., Von Neumann

stability analysis) can be applied when the grid is uniform and the solution

106 Chapter 5. Immersed interface parabolic solver for VPM

periodic. Moreover, the finite difference discretization scheme must remain

identical for all grid points. The stability criterion for the discretized Eq. (5.2)

without interface is a well-known result:

r ∆=
ν∆t

h2
≤ 1

2
,

with r the Fourier number. The presence of the interface invalidates this ap-

proach, as the stencil is modified near the interface. As a consequence, we have

to consider different tools. In the following analysis, we will focus on the single

step Runge-Kutta schemes of order p.

The matrix stability analysis is based on the study of the whole discretized

linear system, including the boundary conditions. Performing first the space

discretization of Eq. (5.1), we obtain the following linear ordinary differential

equation (the time is still continuous)

dU

dt
= ν

(
B

h2

)
U ,

with B/h2 the discretized second derivative in space, including the correction

terms, and U(t) the vector of the unknowns ωi(t) and of the prescribed bound-

ary conditions at x0, a and b = xN . For this analysis, the boundary conditions

are assumed to be constant in time.

The time integration can then be written in the form of an amplification

matrix A:

Un = AUn−1 = · · · = AnU0 ,

where Un is the solution vector at time tn.

An exact time integration over one time step ∆t is given by

A = exp(rB) ∆= lim
N→∞

N∑

p=0

1

p!
(rB)p ,

with B0 = I the identity matrix. The pth order Runge-Kutta scheme is simply

a truncation of the aforementioned exponential

A = I + (rB) +
1

2
(rB)2 + ... +

1

p!
(rB)p .

5.1. One-dimensional case 107

The approximation is defined to be Lax-stable for τ > 0 (∆t ≤ τ and 0 ≤
n∆t ≤ T), if the following condition holds

∀n : ‖An‖ ≤ 1 .

A necessary condition for this is

ρ(A) ∆= max
k
|λk(A)| ≤ 1 , (5.3)

with ρ(A) the spectral radius of the matrix A and λk(A) its eigenvalues. This

condition is sufficient if the matrix A is normal (A AT = AT A).

The eigenvalues of A can be linked to those of B = VΛBV−1 (we assume

B is diagonalizable), where ΛB is the diagonal matrix of the eigenvalues λk(B).

Indeed, we can write

A = V I V−1 + r VΛBV−1 +
r2

2
VΛ2

BV−1 + ... +
rp

p!
VΛp

BV−1

= V

[
I + r ΛB +

r2

2
Λ2

B + ... +
rp

p!
Λp

B

]
V−1

= VΛAV−1 .

Hence, the eigenvalues of A satisfy

λk(A) = φ
(
r λk(B))

)

φ(z) ∆= 1 + z +
1

2
z2 + ... +

1

p!
zp .

The necessary condition for stability is then

r ≤ rmax
∆= sup

r∗∈D

r∗ , (5.4)

with D
∆= {r > 0 s.t. ρ(A) ≤ 1} = {r > 0 s.t. ∀k : r λk(B) ∈ S } and S

∆=

{z ∈ C s.t. |φ(z)| ≤ 1} the region of stability associated to the time integra-

tion scheme (here the Runge-Kutta scheme of order p).

Note that for any function φ(z) defined on the spectrum of B (i.e. φ(λk(B))

exists for all eigenvalues of B, assuming again B is diagonalizable), the eigen-

values of φ(B) are simply φ(λk(B)), see [59]. The analysis is hence applicable

to other time integration schemes, such as for example implicit Runge-Kutta

methods. In particular, φ(z) is a rational function for Lobatto IIIB methods

108 Chapter 5. Immersed interface parabolic solver for VPM

(e.g. the second order scheme leads to φ(z) = (1 + z/2)/(1− z/2)). The latter

methods are unconditionally stable thanks to their implicit nature and they

thus do not require a further analysis (|φ(z)| ≤ 1 for z ∈ C with ℜ{z} ≤ 0).

The uncorrected centered finite difference scheme provides real eigenvalues

λk(B). However, the addition of the correction terms due to the presence of the

interface may generate complex eigenvalues λk(B), and the stability criterion

for the explicit Euler scheme (p = 1) then simplifies as follows

r ≤ rmax
∆= min

k

[
−2 ℜ{λk(B)}
|λk(B)|2

]
.

As an example, Fig. 5.2 shows the position of rmax λk(B) for all possible h+/h

together with the Euler stability region (here N = 50).

−2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

rmax ℜ{λk(B)}

r m
a
x
ℑ{

λ
k
(B

)}

Figure 5.2: Position of rmax λk(B) for all possible h+/h together with the Euler
stability region (N = 50). The immersed BC is Dirichlet with l = 1.

The stability criteria as a function of h+/h, for N = 200, are shown in

Fig. 5.3. These criteria are obtained using a bisection method on ρ(A) − 1,

which is a continuous function of r (but not differentiable) for all λk(B) such

that ℜ{λk(B)} < 0. The domain is defined as x0 = −L + h+ and b = xN =

L+h+ and the interface is at a = 0 (N is even). Fig. 5.3 compares the stability

criteria of different Runge-Kutta integration schemes (p = 1, 2, 3 and 4) with

5.1. One-dimensional case 109

a Dirichlet BC and a Neumann BC at x = a. It also shows the influence of

the stencil shifting parameter l used in the one-sided stencil to compute the

different derivatives of the solution. Table 5.1 provide the most severe criterion

for each case (worst possible h+/h). The case Dirichlet with l = 0 is seen to be

unconditionally unstable for small values of h+/h, independently of the order

p. This is not a surprise because the system to obtain the coefficients of the

one-sided finite differences becomes singular as h+/h → 0. The latter is not

acceptable because the intersection of the grid and the interface is arbitrary

in general, leading to all possible values of h+/h. The found criteria are not

too restrictive, compared to the classical limits obtained by the Von Neumann

analysis without interface. The results appear to be independent of N , at least

for N not too small (N = 50 and N = 200 provide the same criteria to within

10 digits).

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h+

h

r
m

a
x

(a)
0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h+

h

r
m

a
x

(b)

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h+

h

r
m

a
x

(c)
0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h+

h

r
m

a
x

(d)

Figure 5.3: Maximum Fourier number obtained by matrix stability analysis in the
one-dimensional case, on a grid with N = 200. Runge-Kutta scheme of order p = 1
(Euler) (a), p = 2 (b), p = 3 (c) and p = 4 (d). Immersed boundary condition
type: Neumann with l = 0 (thin solid), with l = 1 (thin dash-dotted); Dirichlet with
l = 0 (thin dashed), with l = 1 (thick dash-dotted); classical stability criterion without
interface (thick solid).

110 Chapter 5. Immersed interface parabolic solver for VPM

BC type Euler RK2 RK3 RK4

Neumann (l = 0) 0.3954 0.3954 0.4967 0.5506

Neumann (l = 1) 0.4108 0.4108 0.5161 0.5721

Dirichlet (l = 0) 0.0 0.0 0.0 0.0

Dirichlet (l = 1) 0.4761 0.4761 0.5981 0.6630

No interface 0.5000 0.5000 0.6282 0.6963

Table 5.1: Stability criteria rmax for the different Runge-Kutta integration schemes
and for different types of boundary conditions (‘no interface’ stands for the Von Neu-
mann stability criterion without immersed interface).

As a matter of fact, the matrix A is non-normal here and the computed

criteria are actually not sufficient. Yet, some numerical experiments that

are not reported here have shown that the stability criteria obtained using

Eq. (5.4) provide a “reasonable” value for rmax, though. Indeed, a compu-

tation performed using a time step such that r is slightly greater than rmax

(r − rmax ≃ 10−4) becomes unstable after several thousands of time steps,

whereas choosing r = rmax leads to a numerical solution that remains stable.

In order to provide a sufficient condition, one may alternatively study the

ǫ-pseudospectrum Λǫ(rB) of rB (Λǫ(E) is the set of all ǫ-pseudo-eigenvalues

z ∈ C such that z is an eigenvalue of E + δE for some δE with ‖δE‖ ≤ ǫ).

According to Reddy and Trefethen [107], the discretization is Lax-stable, except

for an algebraic factor, if and only if all ǫ-pseudo eigenvalues of rB lie within

a distance O(ǫ) of the stability region S of the time integration scheme.

Note that, if Eq. (5.3) is satisfied, the non-normality of A may solely induce

some transient growth of ‖An‖, depending on the initial condition. Asymptot-

ically (for n large), this norm converges to zero, as ‖An‖ ≤ ρn(A)κ(V), with

κ(V) the condition number of V.

5.2. Two-dimensional case 111

5.2 Two-dimensional case

The diffusion equation for ω(x, t) in two dimensions reads

∂ω

∂t
= ν∇2ω = ν

(
∂2ω

∂x2
+

∂2ω

∂y2

)
.

Considering the direction-splitting approach from Chapter 4, one must com-

pute the correction terms J+
α and J−

α (just as in the one-dimensional case, see

Eq. (5.1)) at the control point xα, i.e. at the intersection between the interface

and a grid line. The required derivatives
(
∂kω/∂xk

)
α

are therefore evaluated

along the grid line on which the control point is defined.

Enforcing a Neumann condition in a splitting approach becomes more dif-

ficult in two dimensions, as the first derivatives in the two directions are now

coupled :

qω
∆= −ν

∂ω

∂n
= −ν

(
nx

∂ω

∂x
+ ny

∂ω

∂y

)
,

with n ∆= (nx, ny) the normal vector to the body boundary. Two-dimensional

Taylor series could be used to develop stencils that evaluate all derivatives

appearing in J+
α and J−

α as a function of the imposed normal derivative. Yet,

the choice of the stencil points is not trivial, as it may lead to rank deficiency

of the coefficient matrix (see Section 4.4.3), making the approach not robust.

As a consequence, we use again one-dimensional finite differences

(
∂kω

∂xk

)

α

= (Sk
q)α

(
∂qω

∂xq

)

α

+

3∑

p=1

(Sk
q)p ωi+p+l,j +O(h4−k) , (5.5)

where the one-sided stencil is written here for a control point lying on a grid line

y = yj (xα = (xα, yj) where xα is between xi and xi+1). The basic problem is

that we know neither ωα, nor (∂ω/∂x)α. One could imagine replacing (∂ω/∂x)α

by

(
∂ω

∂x

)

α

=
1

nx

((
∂ω

∂n

)

α

− ny

(
∂ω

∂y

)

α

)
.

However, this approach is geometrically not robust, as nx may be equal to

zero. It would also leave us with the question of how to compute (∂ω/∂y)α. A

different strategy must be adopted. Section 5.2.1 is devoted to addressing that

112 Chapter 5. Immersed interface parabolic solver for VPM

issue and developing a 2-D immersed interface scheme. Section 5.2.2 studies

the stability of this scheme and Section 5.2.3 provides some results on a grid

convergence analysis.

5.2.1 Compatible extrapolation scheme

for Neumann boundary conditions

The aim of this section is to write a scheme that couples both directions (x

and y) without using the information of a neighboring control point, contrary

to what is done in Chern and Shu [21].

At this point, we introduce the terminology of current and transverse di-

rection. When considering a control point that lies on a grid line y = const,

the current direction is simply the x direction, whereas y is the transverse di-

rection. The roles are inverted if the control point lies on a grid line x = const.

The current coordinate will be noted as ξ and the transverse coordinate as η.

Partial derivatives in these directions will be respectively noted as

ω
(k)
ξ

∆=
∂kω

∂ξk
(xα)

ω(k)
η

∆=
∂kω

∂ηk
(xα) .

This terminology was not needed in the case of a Dirichlet condition, as the

derivatives were only computed in the current direction.

The following system provides the ingredients to enforce a flux condition





ωα = Sξ
α ω

(1)
ξ +

3∑

p=1

Sξ
p ωξ,p +O(h4)

ωα = Sη
α ω(1)

η +
3∑

p=1

Sη
p ωη,p +O(h4)

(
∂ω

∂n

)

α

= nξ ω
(1)
ξ + nη ω(1)

η ,

(5.6)

where ωξ,p correspond to the values of the solution at grid points lying on

the current grid line (here, we define again a stencil shifting parameter lξ that

determines the distance in number of grid points of the first stencil point to

the first grid point in the flow). The ωη,p are solution values of some points

lying on parallel grid lines, but not necessarily associated to grid points, as

can be seen in Fig. 5.4. Sξ
∗ and Sη

∗ are simplified stencil notations for (S0
1)∗,

respectively in the current and transverse direction (see Appendix A).

5.2. Two-dimensional case 113

The criterion to select whether the transverse stencil points are chosen for η

increasing or for η decreasing (respectively upwards or downwards in Fig. 5.4)

is based on the underlying level set value of the adjacent grid points.

body

flow

ωξ,1 ωξ,2 ωξ,3

ωη,1

ωη,2

ωη,3

Figure 5.4: Sketch of the “compatible extrapolation” scheme to compute ωα, ω
(1)
ξ

and ω
(1)
η : control point (blue cross); irregular points affected by the corrections of the

control point (blue circles); stencil points for the current direction (ωξ,p with lξ = 1,

red bullets); stencil points for the transverse direction (ωη,p, red circles); stencil points

required for the interpolation of ωη,p (green bullets).

The idea behind this scheme is to write two one-sided schemes for the wall

value ωα, one in the current direction and one in the transverse direction.

Both schemes are respectively written as a function of ω
(1)
ξ and ω

(1)
η , which

are still unknown at this stage, as is ωα. The matching condition for those

two evaluations of ωα is provided by the Neumann boundary condition, which

then closes the system. We call this scheme compatible extrapolation because

it adjusts the first derivatives in order to match the value at the wall, using the

provided normal derivative.

The 3-by-3 system of Eq. (5.6) can be solved for ωα, ω
(1)
ξ and ω

(1)
η . The

next step consists in plugging the result into the one sided stencil Eq. (5.5) for

the computation of the jumps needed by the correction terms Jα. We have the

114 Chapter 5. Immersed interface parabolic solver for VPM

choice to use ωα or ω
(1)
ξ as the wall information (using both values inside the

correction terms is also possible). Using ω
(1)
ξ and l = 0 for Eq. (5.5) leads to a

lower leading error term in practice. The explicit solution of the latter system

yields the following expressions

ω
(1)
ξ =

1

D

(
nη Sη − nη Sξ + Sη

α

(
∂ω

∂n

)

α

)
+O(h3)

ωα = Sξ
α ω

(1)
ξ + Sξ +O(h4) , (5.7)

with D ∆= nξS
η
α + nηSξ

α the determinant, Sξ ∆=
∑3

p=1 Sξ
p ωξ,p and Sη ∆=

∑3
p=1 Sη

p ωη,p. The scheme is still linear, as expected, and the coefficients

are only geometry dependent. The order of the error term for ω
(1)
ξ is based

on the observation that D = O(h) (see Appendix A). The order of both error

terms are also consistent with the precision required by the correction terms in

order to ensure a local second order scheme.

Numerically, the system is well-posed because the value of the determinant

D never goes to zero if the current stencil shift is equal to lξ = 1, as represented

in Fig. 5.5. Indeed, |Sξ
α|/h only depends on h+/h and |Sη

α|/h is a constant.

All possible geometrical configurations can be covered by letting vary the angle

θ ∆= arctan(nη/nξ) between −π and π. Fig. 5.5 show the behavior of |D| as a

function of h+/h and θ (lξ = 0 in Fig. 5.5(a) and lξ = 1 in Fig. 5.5(b)).

Figure 5.5: Behavior of |D| as a function of θ ∆= arctan(nη/nξ) and h+/h for
different grid shifting parameters : (a) lξ = 0 and (b) lξ = 1.

We also stress that this scheme easily generalizes to three dimensions. In-

deed, the system remains closed, since one wall evaluation would simply be

added in the third grid direction, using the associated partial derivative as the

fourth unknown.

5.2. Two-dimensional case 115

Fig. 5.4 also shows that the values ωη,p have to be interpolated from adjacent

grid point values. The approach followed here consists in taking 4 stencil nodes

ωη,p,s along the current direction (green bullets in Fig. 5.4). This ensures a

fourth order interpolation (see Appendix A), which is required for the second

order precision of the correction terms

ωη,p =

4∑

s=1

T 0
s ωη,p,s +O(h4) .

The stencil points are chosen so as to be as much as possible centered around

the interpolation point, yet remaining outside of the body. In some cases, where

the interface becomes perpendicular to the current direction, the envelope of

the transverse interpolation nodes may result in an extrapolation instead of an

interpolation of ωη,p. Nevertheless, in practice, this issue does not appear to

be problematic in terms of precision and stability of the scheme.

5.2.2 Stability analysis

The stability of this scheme is studied, as in the one-dimensional case. We can

compute the eigenvalues associated with the amplification matrix of the spatial

derivative discretization, including the correction terms near the interface.

The discretization is performed on a (N + 1)× (N + 1) grid defined in the

domain [−D; D] × [−D; D] with a Dirichlet condition on the outer boundary

(the cells are thus isotropic and ∆x = ∆y = h = 2D/N). The inner boundary

is a circle of diameter D = 2R, with R its radius. Contrary to previously, we

may not isolate the influence of the correction associated to one specific control

point here. Therefore, we conduct the stability analysis by letting vary the

position xc of the circle center with respect to the grid and we monitor the

associated distribution of the geometric parameter h∗. Similarly to the one-

dimensional case with h+, h∗ is defined as the distance between the control

point xα and the grid point on the flow side affected by the correction coming

from xα. Three different representative positions xc are considered here, as

shown in Fig. 5.6. The latter are assumed to be the “worst cases”.

Results of the stability analysis are shown for different resolutions N in

Table 5.2, when enforcing a Dirichlet condition on the circle boundary, and in

Table 5.3, when enforcing a Neumann condition using the compatible extrap-

olation scheme. The stability analysis is performed for the three positions xc

and the results are shown at the position xc leading to the most severe stability

criteria.

116 Chapter 5. Immersed interface parabolic solver for VPM

0 0.5 1
0

0.5

1

A B

C

x/h

y
/
h

Figure 5.6: Sketch of the different positions of the center of the circle xc used for
the stability analysis; A : xc/h = (0, 0), B : xc/h = (0.5, 0) and C : xc/h = (0.5, 0.5).

xc

A B C Euler RK2 RK3 RK4

N = 20 × 0.2499 0.2499 0.3140 0.3481

N = 30 × 0.2506 0.2506 0.3148 0.3489

N = 40 × 0.2483 0.2483 0.3119 0.3457

N = 50 × 0.2503 0.2503 0.3145 0.3486

No interface 0.25 0.25 0.3141 0.3482

Table 5.2: Stability criteria rmax obtained for a Dirichlet boundary condition (l = 1)
applied at the circle interface. The ”×“-sign indicates the position of xc that leads
to these criteria, at different resolutions N (‘no interface’ stands for the 2-D Von
Neumann stability criterion without immersed interface).

xc

A B C Euler RK2 RK3 RK4

N = 20 × 0.2127 0.2127 0.2672 0.2962

N = 30 × 0.2293 0.2293 0.2881 0.3193

N = 40 × 0.2280 0.2280 0.2865 0.3176

N = 50 × 0.2217 0.2217 0.2786 0.3088

No interface 0.25 0.25 0.3141 0.3482

Table 5.3: Stability criteria rmax obtained for a Neumann boundary condition (l = 0)
applied at the circle interface, using the compatible extrapolation scheme. The ”×“-
sign indicates the position of xc that leads to these criteria, at different resolutions N
(‘no interface’ stands for the 2-D Von Neumann stability criterion without immersed
interface).

5.2. Two-dimensional case 117

These results certainly do not cover all possible configurations but they

essentially show that using an immersed interface correction in two dimensions

gives rise to less severe stability criteria compared to that of the one dimensional

case. Moreover, the criteria do not differ much from those obtained using the

Von Neumann analysis, valid for cases without interface.

One may also notice that the compatible extrapolation scheme for the Neu-

mann immersed interface BC is sensibly less stable than the Dirichlet BC im-

mersed interface scheme, though not significantly. Remarkably, both types of

boundary conditions share the same location xc (for all considered grid res-

olutions N), where the scheme leads to the most severe stability criterion.

It is also worth mentioning that the design of a Neumann enforcing scheme

that is based on extrapolation of the tangential derivative produces eigenval-

ues with ℜ{λk(B)} > 0, which is unconditionally unstable. The compatible

extrapolation however removes this undesired feature by reducing the level of

extrapolation while providing an additional information at the wall (the flux),

turning the extrapolation into an interpolation. The distributions of h∗/h re-

lated to the most unstable location xc at different grid resolutions N (according

to Tables 5.2 and 5.3) are given in Fig. 5.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

h∗/h

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

h∗/h

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

h∗/h

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

h∗/h

(d)

Figure 5.7: Normalized distribution of h∗/h for (a) N = 20 (xc at A), (b) N = 30
(xc at B), (c) N = 40 (xc at A) and (d) N = 50 (xc at B). The open circles represent
the pointwise distribution of the particular configurations h∗/h = 0, 0.5 and 1.

118 Chapter 5. Immersed interface parabolic solver for VPM

One may also compare in Fig. 5.8 the eigenvalues λk(B) obtained when

enforcing either a Dirichlet condition, either a Neumann condition for the most

unstable configuration at N = 50. The Dirichlet condition seems to produce

eigenvalues with higher imaginary parts.

−10 −8 −6 −4 −2 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

ℜ{λ(B)}

ℑ{
λ
(B

)}

(a)

−10 −8 −6 −4 −2 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

ℜ{λ(B)}

ℑ{
λ
(B

)}

(b)

Figure 5.8: Eigenvalues λk(B) obtained when enforcing (a) a Dirichlet condition
and (b) a Neumann condition at position xc/h = (0.5, 0) and for N = 50. The square
represents the most unstable mode λm(B) corresponding to ρ(A). The figure also
shows the associated stability regions for some Runge-Kutta time integration schemes
up to order 4 and scaled by the respective rmax.

The associated most unstable modes ω̂m corresponding to ρ(A) (the square

in Fig. 5.8) are shown in Fig. 5.9. Again, the Dirichlet and Neumann condition

enforcement noticeably differ in their nature. One may easily distinguish the

circular immersed interface for the Dirichlet case whereas, for the Neumann

condition, only one particular stencil point is seen to contribute to the mode.

5.2. Two-dimensional case 119

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.3

−0.2

−0.1

0

0.1

0.2

x/Dy/D

ℜ{
ω̂

m
}

(a)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/Dy/D

ℜ{
ω̂

m
}

(b)

Figure 5.9: Real part of the most unstable mode ω̂m obtained when enforcing (a) a
Dirichlet condition and (b) a Neumann condition at position xc/h = (0.5, 0) and for
N = 50.

120 Chapter 5. Immersed interface parabolic solver for VPM

5.2.3 Grid convergence study

As a next step, we study the convergence of the developed scheme. The test

case we study consists in solving the diffusion of a Gaussian function. The

well-known solution of this problem in a 2-D unbounded domain reads

ω(x, y, t) = g(x, y, t) ∆= ωg
σ2

(σ2 + 4νt)
exp

[
− (x− xg)2 + (y − yg)

2

(σ2 + 4νt)

]
, (5.8)

with xg
∆= (xg, yg) the offset of the function with respect to the origin and σ

the initial core size of the Gaussian. The problem is solved outside of a circle

of radius R, providing the analytical solution as a boundary condition on the

circle boundary. The solution to this problem is thus still g(x, y, t) outside of

the circle. The initial condition is

ω0(x, y) ∆= ω(x, y, 0) =





0 if r < 0

g(x, y, 0) if r ≥ R ,

with r ∆= |x−xc|. We also provide the analytical solution on the outer boundary

of the computational domain as a Dirichlet condition:

∀(x, y) ∈ ∂Ωcomp : ω(x, y, t) = g(x, y, t) .

On the inner boundary, on the flow side (i.e. just outside the circle), we ei-

ther impose a Dirichlet condition or a Neumann condition using the immersed

interface schemes that have been developed:

∀(x, y) ∈ ∂Ωb : ω(x, y, t) = g(x, y, t)

or

∀(x, y) ∈ ∂Ωb :
∂ω

∂n
(x, y, t) =

∂g

∂n
(x, y, t) .

Inside the circle, the boundary condition is homogeneous: ω(x, y, t) = 0 for

r < R and t ≥ 0.

The problem is then solved on the grid (N + 1)× (N + 1) that has already

been defined in the previous section.

5.2. Two-dimensional case 121

The following values have been chosen for the grid convergence study:

σ/R = 1 (5.9)

xc/R = (2,−6) π10−3

xg/R = (0.62,−0.8) .

The center of the circle xc/R has an irrational offset with respect to the origin.

We hence ensure quasi arbitrary intersections between the interface and the

grid and thus avoid any symmetry that could affect the numerical error. The

Gaussian center xg/R is near the interface so as to provide large tangential gra-

dients of the solution along the interface. The initial condition corresponding

to these parameters is shown in Fig. 5.10.

−1

−0.5

0

0.5

1

−1−0.500.51
0

0.2

0.4

0.6

0.8

x/D

y/D

ω
0
/
ω

g

Figure 5.10: Initial condition ω0(x, y) = ω(x, y, 0) considered for the grid conver-
gence study (here N = 100).

The spatial convergence of the numerical discretization is studied in con-

junction with a Euler time integration scheme, similarly to Eq. (5.2). The time

step ν∆t/h2
min = 0.01 is chosen to be very small (and identical for all reso-

lutions N) so that the error due to the mesh size h prevails compared to the

the error due to the time step (hmin is the mesh size of the most refined grid

considered in the convergence study).

122 Chapter 5. Immersed interface parabolic solver for VPM

We also define the following error norms:

ǫ2
∆= ‖ǫ‖2 ∆=

h

ωgD



∑

i,j

(ω̃M
ij − ωM

ij)2




1
2

ǫ∞
∆= ‖ǫ‖∞ ∆=

1

ωg
max

i,j
|ω̃M

ij − ωM
ij | ,

with ω̃M
ij and ωM

i,j respectively the numerical and analytic solutions at the grid

node xij at the time T ∆= M∆t = 0.1 σ2/(4ν). Fig. 5.11 and Table 5.4 show

the grid convergence results. As expected, the second order convergence of the

error norms is confirmed for both types of boundary conditions. Moreover, the

level of the error is fairly comparable in both cases.

25 50 100 200
10

−6

10
−5

10
−4

10
−3

10
−2

N

ǫ 2

(a)

25 50 100 200
10

−6

10
−5

10
−4

10
−3

10
−2

N

ǫ ∞

(b)

Figure 5.11: Grid convergence study for the solution of a diffusing Gaussian func-
tion, while imposing a Dirichlet condition (thin solid line with “∆”-signs) and a Neu-
mann condition (thin dashed line with “◦”-signs) on ∂Ωb: (a) L2 error norm and (b)
L∞ error norm. The thick solid line shows a second order slope.

Dirichlet Neumann

ǫ2 2.05 2.03

ǫ∞ 2.04 2.00

Table 5.4: Observed order of convergence between both most refined grids in the case
of a diffusing Gaussian function.

Chapter 6

Interpolation between

particles and grid in the

presence of a wall

Vortex particle-mesh methods (VPM), used for the simulation of unsteady vor-

tical flows, are based on a combination of information carried by particles and

an underlying grid. This information has to be mapped from one support to an-

other at different steps of the numerical algorithm. The transfer of information

from the particles to the grid is conventionally called P2M (particles-to-mesh)

whereas, the reverse mapping is called M2P (mesh-to-particles).

Historically, the former P2M operation was already used in the framework

of purely Lagrangian methods, in order to periodically reinitialize the set of

particles after a few time steps, using a set of new particles whose positions

coincide with the underlying grid nodes. This reinitialization procedure, also

known as redistribution (or remeshing), is required as the Lagrangian particles

are subject to distortion by the flow. The absence of redistribution would lead

to particle clustering and/or depletion, and thus to a less accurate represen-

tation of the vorticity field as time evolves [71]. On the contrary, performing

this redistribution too often introduces higher numerical errors. Therefore, the

right balance has to be chosen with respect to the redistribution frequency.

The present chapter focuses on the spatial accuracy of the particle-mesh in-

terpolation and the effect of the redistribution frequency onto the numerical

errors is subsequently studied in Chapter 8.

124 Chapter 6. Particle-grid interpolation with a wall

Considering first the 1-D case, and having an old set of distorted particles

(with the associated positions x̃q and intensities α̃q
∆=
∫
Ωq

ω dx), the intensities

αp of the new particles are computed as

αp =
∑

q

α̃q w

(
xp − x̃q

∆x

)
, (6.1)

with w(ξ) a compact support interpolation kernel, and xp = x0 + p ∆x the

positions of the new particles coinciding with a uniform grid of spacing ∆x.

From an algorithmic point of view, we loop over the index q and every old

particle gives the fraction w((xp − x̃q)/∆x) of its intensity α̃q to each new

particle at xp lying in its interpolation range (see Fig. 6.1).

αp

α̃q

xp x̃q

Figure 6.1: Sketch of the P2M redistribution scheme: old particle at position x̃q and
with intensity α̃q (bullet); new particle at position xp and with intensity αp (circles).

As an example, the third order kernel w(ξ) = M ′
4(ξ) ∈ C1(R) derived by

Monaghan [93] is widely used in the Lagrangian methods community:

M ′
4(ξ) =






0 if |ξ| > 2 ,
1

2
(2− |ξ|)2(1− |ξ|) if 1 ≤ |ξ| ≤ 2 ,

1− 5

2
|ξ|2 +

3

2
|ξ|3 if |ξ| ≤ 1 .

(6.2)

The redistribution for higher-dimensional problems is obtained by using a ten-

sor product. For instance, in 2-D, the scheme reads:

αp =
∑

q

α̃q w

(
xp − x̃q

∆x

)
w

(
yp − ỹq

∆y

)
, (6.3)

with αp
∆=
∫
Ωp

ω dS ∆= ωpSp (Sp = ∆x∆y = h2 for an isotropic grid).

The redistribution is computationally quite efficient, especially for an un-

bounded flow domain, as it is a local procedure. It conserves moments up to

125

order 2, by construction (i.e., the integral of the vorticity, the linear impulse

and the angular impulse).

However, the addition of a solid wall requires some modifications in order

to prevent the creation of new particles outside of the flow domain. Indeed, in

1-D, the M ′
4 kernel creates two new particles on both sides of an old particle,

which is undesirable in the vicinity of the wall. Moreover, high order kernels

like M ′
4 provide a poor representation of discontinuous functions (recall that

the vorticity is non-zero at the wall and that it vanishes inside the body when

at rest), due to the negative lobe of w(ξ) for |ξ| > 1.

It should be mentioned that some approaches do not require a particular

treatment of the redistribution scheme near the wall. As an example, penal-

ization methods account for the presence of the wall by computing a body

force [50]. This regularized body force is computed on the grid so as to approx-

imately enforce the proper velocity at the wall and inside the body. Hence,

the flow is extended inside the body and the same redistribution scheme is

performed everywhere. The drawback of this approach comes from the regu-

larization of the body force that induces a smearing of the solution field near

the wall. In the present approach a “sharper” treatment of the wall is sought

for.

Ploumhans et al. [102] use decentered and lower order schemes near the

wall, along with a procedure to choose which direction to perform the redistri-

bution first (so as to get the “least decentered” configuration). This approach

was shown to work well for purely Lagrangian vortex methods but, as was

mentioned in [132], the kernels are very oscillatory and produce negative un-

dershoots in the flow domain of higher amplitude than those of M ′
4. Fig. 6.2

shows a redistributed field using the approach from [102]. Even for constant

intensity particles (i.e. partition of unity), the obtained solution exhibits large

oscillations near the wall. No particles are created in the solid body, but the

smoothness of the redistributed field is not guaranteed. The inconsistency be-

tween the decentered kernels and the centered kernel used far from the bound-

aries further accentuates this phenomenon. For vortex particle-mesh methods,

the smoothness of the field is crucial, as the spatial operators are computed on

the underlying grid, using finite differences.

The approach adopted in Cottet and Poncet [35] lies somewhere in between

Gazzola et al. [50] and Ploumhans et al. [102], in the sense that the same

interpolation formulas are used everywhere, i.e. also near the wall. Similarly,

126 Chapter 6. Particle-grid interpolation with a wall

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

2

2.5

x/Dy/D

ω
/
ω

g

Figure 6.2: Particle-to-mesh interpolation using the approach from [102]. The nu-
merical setup of the test case, as well as the particle positions are reported in Sec-
tion 6.1.3.

the computation of the diffusion term is also performed identically at all particle

positions using the PSE scheme [41], regardless of the wall position. Based on

the residual slip velocity at the wall, the integral formulas aiming at enforcing

the no-slip condition are then used in order to correct the spurious vorticity

that was introduced during the interpolation and diffusion steps (the procedure

correspond to the no-slip enforcement explained in Chapter 3 and the formulas

are similar to those from [102]; see also Appendix E.8).

Another possibility consists in using “image” particles, as was done in [83]

and successfully applied in the framework of a 3-D VPM method. The idea

behind this approach is to provide a zero-flux condition at the wall by creat-

ing particles inside the body whose intensities correspond to the original flow

particles and whose positions are symmetric to the original ones relative to

the wall. The part of the intensity that is lost inside the body during the

redistribution of the original particle is then expected to be recovered by the

redistribution of the image particle inside the flow. For arbitrary intersections

of the body interface with the grid, this is no longer true and one may rescale

the image particle so as to stay conservative. Fig. 6.3 shows the application

of this rescaled scheme (similar to [83]); this scheme also implements a “halo”

around the body where particles may not exist, as was also done in [83] (typ-

ically 0 ≤ d < 0.25 h with h the grid size and d the distance to the wall; this

halo is used in order to prevent particles from being too close to the wall, as the

regularity of the underlying panel method solution may otherwise be affected).

The oscillations are still present, but their amplitude is lower than in Fig. 6.2.

127

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

2

2.5

x/Dy/D

ω
/
ω

g

Figure 6.3: Particle-to-mesh interpolation using an approach similar to [83].

To a more general extent, the redistributed field resulting from a P2M op-

eration may also lose its smoothness without the presence of a wall, when the

particles are arbitrarily scattered (with local depletion or clustering). Follow-

ing [34], the accuracy of the redistribution procedure may be linked to the

moment conservation of the kernel. However, only a weak measure of the error

is provided (using a test function), which does not give an indication about the

local behavior of the redistributed field. In order to maintain its smoothness,

the particles should “uniformly” cover the entire vorticity support (for regular-

ized Lagrangian methods this amounts to require that their cores overlap)1.

By contrast, the M2P procedure (going from a regular grid information

to a possibly scattered set of particles) follows the rules of classical interpola-

tion, allowing the analysis of the local error. In this case, the conservation of

moments is not addressed, since in a VPM method, this type of operation is

only used to interpolate onto the particles the right-hand sides of the evolution

equations, namely the velocity and the Laplacian of the vorticity, in 2-D (plus

the vortex stretching in 3-D). Yet, it could be argued that the conservation of

∇2ω is important, though. Nevertheless, it is quite natural to favor the local

accuracy over the moments conservation here.

We first deal with the mesh-to-particles interpolation in Section 6.1. Based

on that, Section 6.2 explains how to adapt the redistribution technique in order

to fit inside an immersed interface framework.

1In practice, the particles move according to a smooth velocity field and thus their posi-
tions remain “organized” (if redistribution occurs regularly). Hence, they are not arbitrarily
scattered.

128 Chapter 6. Particle-grid interpolation with a wall

6.1 Mesh-to-particles interpolation (M2P)

Basically, the tools for the M2P interpolation are the same as those used for

the P2M approach. As the 2-D interpolation stencil is a composition of one-

dimensional schemes (see Eq. (6.3)), we first deal with the 1-D case in Sec-

tion 6.1.1. The generalization of the approach to 2-D is detailed in Section 6.1.2

and then validated in Section 6.1.3.

6.1.1 One-dimensional case

Similarly to Eq. (6.1), the kernel w(ξ) may also be used to interpolate the

value of a function u (rather than the particle-carried quantity
∫
Ωq

u dx) at an

arbitrary location x, based on the values uj = u(xj) that the function takes at

the nodes xj of a uniform grid with spacing ∆x:

ũ(x) =
∑

j

uj w

(
x− xj

∆x

)
, (6.4)

with ũ(x) the interpolation of u(x). Algorithmically, we loop again over the

set of points x where the interpolation of u is required (i.e., at the particles’

positions xp) and we compute Eq. (6.4) by identifying the contributing grid

nodes (see Fig. 6.4).

ũ(x)

uj

xxj

Figure 6.4: Sketch of the M2P interpolation scheme: interpolation ũ(x) of u at x,
using the node values uj at xj.

The M ′
4 kernel is third order accurate and thus interpolates exactly quadratic

functions in the sense that

xm =
∑

j

(xj)
m w

(
x− xj

∆x

)
for m = 1, 2 .

This observation gives some hints about a possible extension of the approach

to wall-bounded fields using ghost nodes inside the body. The computation

6.1. Mesh-to-particles interpolation (M2P) 129

of those ghost nodes follows the lines of classical finite difference methods and

the ghost cell approach [85, 126]. We wish to construct an extended field so

as to be able to apply the same interpolation scheme anywhere, independently

of the wall location. If we compute the values of the ghosts using a quadratic

function matching some prescribed information at the wall, we ensure that the

interpolated function will also satisfy these conditions at the wall, as the M ′
4

kernel exactly interpolates polynomials of degree 2.

As can be seen in Fig. 6.5, for a particle lying between the interface xα

and xi+1, we need two ghost points u∗
i−1 and u∗

i inside the body in order

to interpolate the function at the particle position. Assuming that we know

the value uα
∆= u(xα) of the function u(x) at the wall and its first derivative

u
(1)
α

∆= u(1)(xα), we may write the following system of equations for u∗
i−1 and

u∗
i





T 0
0 u∗

i−1 + T 0
1 u∗

i = uα − T 0
β uβ

T 1
0 u∗

i−1 + T 1
1 u∗

i = u
(1)
α − T 1

β uβ ,
(6.5)

with xβ
∆= xα + ∆x and uβ

∆= u(xβ), which is not known yet. The coefficients

T k
· are defined in Appendix A and allow to compute the kth derivative of a

function at xα using the stencil points {xβ , xi−1, xi}. The reason why the

value uβ is chosen and not ui+1 stems from considerations about numerical

robustness. Choosing ui+1 instead of uβ would have lead to a rank deficient

system Eq. (6.5) when xα → xi+1. As to the value uβ , it is obtained by using

the scheme

uβ = T̃ 0
0 ui+1 + T̃ 0

1 ui+2 + T̃ 0
2 ui+3 , (6.6)

where the coefficients T̃ 0
(·), defined in Appendix A, correspond to those of the

stencil points {xi+1, xi+2, xi+3}. Fig. 6.5 sums up the procedure for the 1-D

case. The approach eventually consists of a simple extrapolation of the solution

from the flow domain, using additionally the function value at the wall and its

derivative. The rationale for this procedure relies on the fact that the previously

developed tools from Appendix A can be reused.

130 Chapter 6. Particle-grid interpolation with a wall

∆x
u∗

i−3

u∗
i−2

u∗
i−1

u∗
i

i − 3 i − 2 i − 1 i i + 1 i + 2 i + 3

uβui+1 ui+2ui+2

ui+3

body flow

xβxα

uα

u
(1)
α

u(x)

Eq. (6.6)

Eq. (6.5)

Eq. (6.7)

Figure 6.5: Sketch of the ghost computation for the 1-D M2P interpolation scheme:
position of the immersed interface at xα with the provided wall data uα and u

(1)
α (blue

cross); stencil to compute uβ (in red); stencil to compute the near-wall ghosts u∗

i and
u∗

i−1 (in blue); stencil to compute the extended ghosts u∗

i−2 and u∗

i−3 for the 2-D case
(in green); open circles represent computed data and bullets represent provided data
(possibly by a preceding computation).

6.1.2 Two-dimensional case

The approach may be generalized to two dimensions by considering again the

tensor product of the M ′
4 interpolation kernels, similarly to Eq. (6.3). Former

to this 2-D interpolation, the ghosts have to be computed along both grid

directions based on the wall information that resides on the control points: the

intersection of the body interface and the grid lines, as defined previously. This

wall information consists of partial derivatives along these grid lines.

The 2-D case adds two more difficulties compared to the 1-D case. First, the

ghost grid field is over-determined, as the application of the previous method-

ology along both directions may lead to different ghost values for some grid

nodes inside the body (see Fig. 6.6). However, we wish to compute this field as

a pre-processing step, in order to then apply the interpolation scheme without

any particular treatment for the particles near the wall. The uniqueness of the

ghost values is thus a prerequisite for this approach and this calls for an adjust-

ment of the algorithm. By contrast, Tseng et al. [126] use multi-dimensional

schemes to construct the ghosts, avoiding thus this over-determination. This

is hardly applicable here, as the wall information at the control points consists

of derivatives along the grid lines and therefore strongly suggests using the

decoupled one-dimensional approach.

6.1. Mesh-to-particles interpolation (M2P) 131

xp

Figure 6.6: Sketch of the 2-D M2P interpolation scheme: control points (green as-
terisks for x direction, blue asterisks for y direction); range of the 1-D methodology
for the ghost computation and applied in both directions (green and blue lines); par-
ticle at xp near the wall (black crossed square); flow grid nodes used for the M2P
interpolation at xp (black bullets); grid ghosts required for the M2P interpolation at
xp (open circles); ghosts provided by the 1-D methodology (black open circles); ghosts
missed by the 1-D methodology (red open circles).

Secondly, restricting the number of ghosts to two nodes in the x and y direc-

tions, as was done for the 1-D case, may lead to “holes” in the ghost distribution

required for the 2-D case. More precisely, Fig. 6.6 shows that particles near

the wall may still see “empty” ghost nodes in their 4x4 interpolation stencil,

which leads to a loss of accuracy.

The second difficulty can be circumvented by further extending the envelope

of the ghosts, i.e., by adding two more ghost points, as shown in Fig. 6.5. We

thus distinguish between near-wall ghosts (u∗
i and u∗

i−1) and extended ghosts

(u∗
i−2 and u∗

i−3). A consistent way to compute the values of the latter in 1-D

consists in realizing that we may simply use the same quadratic function p2(x)

determined by Eq. (6.5):

u∗
i−2 = p2(xi−2) and u∗

i−3 = p2(xi−3) , (6.7)

or, equivalently, by applying two different T 0
(·) schemes using the solution values

at the nodes {xβ , xi−1, xi}. This procedure is clearly a further extrapolation of

the ghost values and we do not control their behavior. However, the value at

the particle position xp may be rewritten as a linear combination of the solution

132 Chapter 6. Particle-grid interpolation with a wall

values in the flow and the wall data, and the envelope of this information is

thus a convex hull enclosing the evaluation point xp.

The over-determination of the ghosts is handled by computing a weighted

contribution of the information coming from the different control points. Ge-

ometrically, a grid node inside the body may receive at most 4 different ghost

values, as the node may be surrounded by 4 control points in the worst case,

in 2-D. A distinction is made between near-wall and extended ghosts, giving

a higher priority to near-wall ghosts, since the distance to their originating

control point is smaller, making the information more reliable (the procedure

is detailed hereafter).

Eqs. (6.5)-(6.7) are expanded as a set of coefficients ζql (stored at all control

points) that are used for the construction of the ghosts. The near-wall ghost

correspond to q = 1, 2 and the extended ghosts to q = 3, 4 (cf. the 1-D case

in Fig. 6.5 with u∗
i+1−q); the index l loops over all elements required for the

ghost computation, namely the wall data and the field value at some grid nodes

(including ghost values for the extended ghosts). In 1-D, we have

u∗
i+1−q = ζq,1 uα + ζq,2 u(1)

α +
8∑

l=2

ζql ui+l−4 .

These coefficients are then modified according to the 2-D weighting. This can

be all performed as a pre-processing step if the body does not move with respect

to the grid.

The weighting is computed using an auxiliary scalar grid field χij , a mask

field that is bookkeeping the number of contributions per ghost grid node. The

mask χij is first filled with contributions coming from the near-wall ghosts, by

looping over the control points. After this loop, the weight for a near-wall ghost

q emanating from a particular control point and lying at xij may be computed

as the arithmetic average 1/χij and ζql is scaled accordingly. Next, the near-

wall ghost coefficients ζql (q = 1, 2) are frozen and we repeat the procedure for

the extended ghosts (q = 3 and q = 4). Finally, all ghosts may be computed in a

single loop over the control points and by summing all contributions according

to the updated coefficients ζql.

The weighting approach induces some smoothing of the ghost field. The

accuracy of the interpolation may be slightly affected, as well as the enforcement

of the wall conditions. This is the price to pay for preserving the uniqueness

of the ghost values. As will be shown in the grid convergence study, the order

of the error is not affected.

6.1. Mesh-to-particles interpolation (M2P) 133

We also point out that the ghost construction implies some restrictions on

the body geometry, as on the one hand we need 3 grid points on the flow side

of each control point and on the other hand there may still be some “holes”

(unassigned ghosts) for non-convex bodies with high local curvature.

6.1.3 Grid convergence study

Similarly to Section 5.2.3, the test case we are validating the present method-

ology against is the M2P interpolation of a function that is defined outside of a

cylinder centered at xc and of radius R (and thus of diameter D = 2R). In this

case, we consider the Laplacian of the Gaussian function g(x, y, 0) (Eq. (5.8)):

∇2ω(x, y) ∆=





0 if r < R

∇2g(x, y, 0) =
4ωg

σ2

[
r2
g

σ2
− 1

]
exp

(
− r2

g

σ2

)
if r ≥ R ,

with r ∆= |x − xc| and rg
∆= |x − xg| (for the sake of clarity, the time variable

t = 0 will be omitted from now on). Considering the Laplacian of a Gaussian

function stems from the fact that ∇2ω is one of the quantities that have to

be interpolated onto the particles in a VPM method. We perform here a

comparison between two different setups. In the first setup (case 1), the field

(∇2ω)ij and the associated wall data are provided analytically whereas, in the

second case (case 2), both are computed using (corrected) finite differences

based on the prescribed field ωij = g(xi, yj) and the flux (∂ω/∂n)α at the

control points, as would be the case for a VPM method. The details about

these immersed interface computations can be found in Appendix B.

The numerical parameters defining∇2ω are given in Eq. (5.9). We use again

a (N + 1)× (N + 1) grid defined in the domain [−D; D]× [−D; D] (thus again

∆x = ∆y = h). The extended grid field for the M2P interpolation computed

according to Section 6.1.2 and using the analytical field ∇2ω and wall data

is shown in Fig. 6.7 for N = 100. The ghost field provides indeed a smooth

extension across the interface.

In order to validate the interpolation procedure using the ghosts, we define

a set of particle positions xp resulting from the advection (during one time

step ∆tadv) of the grid node positions (in the flow domain) with a prescribed

velocity field uadv = (Γadv/2πr) êθ corresponding to a purely azimuthal flow

with circulation Γadv (θ is defined with respect to xc).

134 Chapter 6. Particle-grid interpolation with a wall

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−15

−10

−5

0

x/Dy/D

(∇
2
ω
)
D

2
/
ω

g

Figure 6.7: M2P extended field obtained for ∇2ω with N = 100. The cylinder
boundary is represented by a thick solid line; grid points inside the body which are not
ghosts have been omitted.

The advection time step ∆tadv is such that the CFL number

∆tadv

h

|Γadv|
2πR

= 0.5

is held fixed for all considered grid resolutions N . The resulting particle po-

sitions are shown in Fig. 6.8. We thus ensure that the particle positions with

respect to the grid remain similar for all grid resolutions N . Moreover, all

particles having a non-zero velocity, none of the particles coincide with grid

nodes; otherwise the interpolation would have been trivial at those points and

the computed error biased. Moreover, the orientation of the particle position

vector with respect to the associated grid node is uniformly distributed over

all particles.

6.1. Mesh-to-particles interpolation (M2P) 135

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

x/D

y
/
D

Figure 6.8: Sketch of the problem setup for the validation of the 2D M2P interpola-
tion scheme in the case of a cylinder and at a grid resolution N = 100: M2P ghosts
inside the body (open circles); flow grid nodes (bullets); particle positions (dotted
circles) with their associated advection path (thin lines).

The following error norms are defined over the set of particles

ǫ2
∆= ‖ǫ‖2 ∆=

hD

ωg

(
∑

p

((̃∇2ω)p − (∇2ω)p)
2

) 1
2

ǫ∞
∆= ‖ǫ‖∞ ∆=

D2

ωg
max

p

∣∣∣(̃∇2ω)p − (∇2ω)p

∣∣∣ ,

with (̃∇2ω)p and (∇2ω)p respectively the interpolated field and the analytical

field ∇2ω evaluted at xp. The error norms are reported in Fig. 6.9 and exhibit

a third order convergence rate for case 1. This is expected, as the interpolation

kernel M ′
4 enjoys the same convergence properties. The rate of convergence for

the L2-error norm is 3.01 (between N = 400 and N = 800) and 3.02 for the

L∞-norm. Case 2 exhibits a second order convergence (2.07 for the L2-error

norm and 1.76 for the L∞-norm), with a higher error level.

136 Chapter 6. Particle-grid interpolation with a wall

100 200 400 800
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

N

ǫ 2

(a)

100 200 400 800
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

ǫ ∞

(b)

Figure 6.9: Grid convergence study for the M2P interpolation procedure: (a) L2-
error norm and (b) L∞-error norm. The error norm is represented by a thin solid
line with “◦”-signs for case 1 and a thin dashed line with “∆”-signs for case 2; the
thick solid line shows a third order slope and the thick dash-dotted line shows a second
order slope.

6.2. Particle-to-mesh interpolation (P2M) 137

6.2 Particle-to-mesh interpolation (P2M)

A fundamental difference with the M2P operation is that the P2M scheme

intrinsically enlarges the vorticity support as it explicitly affects two grid nodes

on each side of the particles, whereas the M2P simply collects data onto the

existing particles. Following the philosophy of the M2P approach, we might as

well think of the P2M procedure as an interpolation. We again choose to carry

the point information ω on a particle, as opposed to the previously defined

intensity α. Hence we relax the exact conservation of moments and again focus

on the local accuracy of the remeshed field, which should eventually provide

the necessary smoothness to operate the spatial differentiation required for

the VPM method. Moreover, the targeted convergence of the method in space

should likewise imply the convergence of the computed moments for a vanishing

grid spacing.

The aim is to keep the method as close as possible to the initial approach,

i.e. by keeping the loop over the particles and thus avoiding to identify the

set of particles near a grid point susceptible to contribute to the interpolation.

We consider here two approaches: one is based on the extension procedure

enabled by level set-based methods and interface-tracking algorithms [113, 2,

99] (see Section 6.2.1) and the other one suggests “inverting” the M2P approach

from Section 6.1.2 (see Section 6.2.2). The first approach will be used for

the remainder of this work in the framework of VPM methods, as the second

methodology, while promising and more general, still needs some stabilization

in order to converge for all cases.

6.2.1 Wall data extension approach

Similarly to the M2P operation, we wish to straightforwardly apply the classi-

cal redistribution scheme Eq. (6.3), after the pre-computation of a ghost field.

In the present case, we need a set of ghost particles, akin to the previous grid

ghosts. The difficulty resides here in the fact that, in addition to the value of

these ghosts, we also need to provide their position, that may in general differ

from the associated grid nodes. This choice is all the more so important, that

the required smoothness of the regridded field is closely linked to the distribu-

tion of the particles in space, as was already mentioned in the introduction of

this chapter. The information about the positions may be extracted from the

surrounding flow, whereas the value of the ghosts is related to the prescribed

138 Chapter 6. Particle-grid interpolation with a wall

wall data, again similarly to the M2P approach. By comparison, the “image”

particles used in [83] may be considered as ghost particles whose position is

determined by symmetry of the original particle’s position with respect to the

wall.

Taking into account the flow particles for the ghost construction is chal-

lenging, due to their (possibly) arbitrary positions. In the present approach we

therefore restrict the information for the ghost computation to the wall data

only. Anticipating the type of information that is provided at the wall by a

VPM method, namely the vorticity flux (i.e. (∂ω/∂n)α with the normal n

pointing outwards of the body), we opt for a linear extension of the vorticity

along the normal to the body boundary. This can be related to what was done

for M2P where a “quadratic” extension was chosen. Now assume that we also

know the vorticity value ωα at the wall point xα. Given the signed distance

function φ(x) (i.e., the level set; it is negative in the body), the expression for

the extension reads

ωext(x) ∆= ωα + φ(x)

(
∂ω

∂n

)

α

, (6.8)

with xα = x−φ(x) n the projection of x onto the boundary and n the normal

vector emanating from xα. Basically, if we further know the position x∗
p of

the ghost particles inside the body, we may use the combined set of real par-

ticles ωq and ghost particles ω∗
p

∆= ωext(x∗
p) to provide the support for a P2M

interpolation onto the grid.

This type of extension was also used in [75]. There, the wall point xα is

computed geometrically using the orthogonal projection in spherical coordi-

nates. The present computation of the extended field is based on the work of

Peng et al. [99], which is more appropriate to be combined with the immersed

interface framework, as no projection is required. Let us first consider an ex-

tension field q(x) that is constant along the normal, resulting thus in q(x) = qα

with xα = x− φ(x) n and qα the associated wall data (in fact, Peng et al. [99]

do not need a linear extension but, based on their approach, we will show how

to adapt the method to provide it). The field q is the steady state solution (in

a bounded domain) of the following Hamilton-Jacobi equation :

∂q

∂τ
+ S(φ) ∇φ · ∇q = 0 , (6.9)

6.2. Particle-to-mesh interpolation (P2M) 139

with τ a pseudo time variable and S(φ) the signature function defined as

S(φ) =






−1 if φ < 0 ,

0 if φ = 0 ,

1 if φ > 0 .

The characteristics of this hyperbolic equations are straight lines normal to

the body boundary, as ∇φ = n ∆= (nx, ny) can also be defined away from

the boundary (φ being a distance function we also have that |∇φ| = 1). The

“advection velocity” is thus simply S(φ) n and it points away from the interface.

This equation only requires a boundary condition on the interface, which is

precisely the prescribed data qα.

Eq. (6.9) is solved on the grid in a narrow band domain B defined by

−db ≤ φ(x) ≤ df enclosing the interface (the width of this band is a few h and

will be determined later on, see Fig. 6.11). To that end, we furthermore need

to define a regularized signature function on the grid:

sij =
φij√

φ2
ij + h2

.

This modification solely affects the norm of the effective advection velocity and

therefore slightly increases the time for the wall information to propagate. We

do not seek to perform a high order time discretization here, as the equation

is meant to be solved iteratively until a steady state is reached. The numerical

scheme suggested by Peng et al. [99] (first order upwind scheme with an Euler

time integration) is adapted so as to account for the information provided at

the control points xα.

The Hamilton-Jacobi Eq. (6.9) is discretized as

qn+1
ij = qn

ij −∆τ

[
(
sijn

x
ij

)+
(

∂q

∂x

)⊕

ij

+
(
sijn

x
ij

)−
(

∂q

∂x

)⊖

ij

+
(
sijn

y
ij

)+
(

∂q

∂y

)⊕

ij

+
(
sijn

y
ij

)−
(

∂q

∂y

)⊖

ij

]
,

where ∆τ is the pseudo time step, (x)+ ∆= max(x, 0) and (x)− ∆= min(x, 0).

Typically ∆τ = 0.5h, as the advection velocity is smaller or equal to 1.

140 Chapter 6. Particle-grid interpolation with a wall

The spatial derivatives of q at xij = (xi, yj) are computed as follows:

(
∂q

∂x

)⊕

ij

=






qi,j − qα

xi − xα
if xij is irregular ,

qi,j − qi−1,j

∆x
otherwise ,

(6.10)

(
∂q

∂x

)⊖

ij

=






qα − qi,j

xα − xi
if xij is irregular ,

qi+1,j − qi,j

∆x
otherwise ,

(
∂q

∂y

)⊕

ij

=






qi,j − qα

yj − yα
if xij is irregular ,

qi,j − qi,j−1

∆y
otherwise ,

(
∂q

∂y

)⊖

ij

=





qα − qi,j

yα − yj
if xij is irregular ,

qi+1,j − qi,j

∆y
otherwise .

Note that the grid point xij is here called “irregular” when the distance to the

nearest control point along the direction corresponding to the derivative of q is

smaller than the grid space h.

Since, the evaluation of the derivatives in Eq. (6.10) is ill-posed when |xi −
xα| or |yj−yα| is small, we further define the switch parameter ε that delimits a

near-wall region |φ|/h ≤ ε from the rest of the computational domain |φ|/h > ε.

Inside this near-wall region, all nodes are irregular if ε < 1 (contrary to above,

the terminology for an “irregular” node here corresponds to the one given in

Chapter 4, i.e. xij is irregular when the distance to the nearest control point in

any grid direction is smaller than the grid size h). In this area, the Hamilton-

Jacobi Eq. (6.9) is not solved in order to prevent the ill-posed configurations

in Eq. (6.10). Instead, we simply enforce the boundary condition as qij = qα,

where xα is the nearest control point. The justification for the approximation

qij = qα stems from the fact that the switch parameter is chosen so as to fulfill

ε << 1, in practice.

As an initial condition we set qij = 0, except for irregular grid nodes, where

we again impose qij = qα corresponding to the boundary value of the nearest

control point xα it is surrounded by. The extension field ωext(x) is constructed

by applying the above methodology to (∂ω/∂n)α and ωα individually, obtaining

thus ωext
α (x) and (∂ω/∂n)ext

α (x).

6.2. Particle-to-mesh interpolation (P2M) 141

The combination (see Eq. (6.8)) is then performed as

ωext(x) = ωext
α (x) + φ(x)

(
∂ω

∂n

)ext

α

(x) .

Hence we do not need to find xα by computing a projection onto the boundary,

contrary to [75].

It should be observed that the switch parameter ε has to be chosen carefully.

It indeed controls the O(εh) error that is made locally on q when assigning

qij = qα in the near-wall region |φ|/h ≤ ε. If the tangential gradient of q

at the wall is significant, the more the grid line differs from the normal line

to the body boundary emanating from the control point, the bigger the error

will be, unless ε is small enough. Yet, the value of ε must not be too small,

as |xij − xα| ≥ |φ(xij)| > εh may become very small while performing the

numerical differentiation in Eq. (6.10). In any case, the nodes in the near-wall

region (and thus affected by the error) are only a subset of all irregular nodes

(their number scales with εL/h, with L the perimeter of the body) and the

global convergence of the L2-error norm should not be significantly affected,

as opposed to the L∞ norm whose convergence might deteriorate when h is

small. From a practical point of view, the value ε = 10−2 seems to provide

satisfying results in terms of convergence, even if ε ∼ h/L is required for formal

convergence.

The extension approach is validated using the same numerical setup as for

the M2P interpolation. The wall data to be extended is provided by evalu-

ating the Gaussian function ω(x, y) = g(x, y, 0) (and its normal derivative)

from Eq. (5.8) on the cylinder boundary from Section 6.1.3. The resulting field

ωext(x) obtained after 20 pseudo time steps is shown in Fig. 6.10 for N = 100.

The extension is also performed on the flow side. The reason for this shall

become clear hereafter, when discussing the positions x∗
p of the ghost particles,

that also have to provided.

The choice for the ghost particle positions x∗
p is nearly arbitrary, yet it must

satisfy some conditions. First, notice that placing the ghost particles at the

grid nodes amounts to simply ignore their existence, as the redistribution of

a grid node is the identity (by application of Eq. (6.2) with ξ = 0) and thus

does not affect any of the grid nodes in the flow domain. Secondly, the set

of particles should be such that every grid point in the flow domain sees 16

142 Chapter 6. Particle-grid interpolation with a wall

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

x/D

y/D

ω
e
x
t
/
ω

g

Figure 6.10: P2M wall data extension ωext obtained after 20 pseudo time steps
for N = 100. The cylinder boundary is represented by a thick solid line; the exact
extension is also shown at some points (thin solid lines).

particles (real or ghost) in its M ′
4 interpolation range, in 2-D (see Fig. 6.11).

This condition actually corresponds to the absence of clustering and depletion

of particles (the partition of unity should be preserved). On the one hand,

this is ensured precisely by the use of regular redistribution, and on the other

hand, the smoothness of the flow velocity preserves the well-ordered spatial

configuration of the particles for short times.

This observation suggests using an extension of the velocity field inside

the body in order to advect the ghost particles in the same way as are the

flow particles (see Fig. 6.11). Referring to the previous Section 6.1, such an

extension is provided by applying the M2P ghost computation to the velocity

field (this is anyway required for the advection of the flow particles in a VPM

method).

In summary, the P2M algorithm consists of the following steps (see also

Fig. 6.11):

1. Ghost particle advection: during the advection of the flow particles,

use the M2P grid extension of the velocity field uext to also move the ghost

particles inside the body. Hence the ghost particle position is determined

by dx∗
p/dt = uext(x∗

p) (the ghost particles are represented by open circles

in Fig. 6.11). Note that uext needs to be interpolated onto the ghost

particles, too (M2P).

6.2. Particle-to-mesh interpolation (P2M) 143

2. Wall data extension: solve Eq. (6.9) for ωext
α and (∂ω/∂n)ext

α to obtain

the extended vorticity field ωext
ij in the narrow band domain B (delimited

by dotted lines in Fig. 6.11; the light grey colored area shows all affected

grid nodes).

3. M2P interpolation: ω∗
p = ωext(x∗

p) is obtained by interpolating ωext
ij

at x∗
p using the 2-D M ′

4 interpolation scheme. The required width of

the narrow band domain B is then −4∆l ≤ φ(x) ≤ 2∆l with (∆l)2 ∆=

(∆x)2 + (∆y)2.

4. P2M interpolation: The particles x∗
p provide the necessary support

for the P2M interpolation that maps ωq and ω∗
p onto the grid in order

to finally obtain ω̃ij (real particles are represented as dotted circles in

Fig. 6.11; the red bullet shows a particular grid node along with its inter-

polation support consisting of red colored real and ghost particles). The

P2M interpolation is only performed on grid nodes of the flow domain.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

x/D

y
/
D

Figure 6.11: Sketch of the P2M interpolation scheme in the case of a cylinder and
at a grid resolution N = 100: grid nodes (small bullets); real particles (dotted circle);
P2M ghost particles (open circles); body boundary (thick solid line); wall extension
domain B (delimited by dotted lines) with affected grid nodes (light grey colored area);
a particular grid node (red bullet) with its interpolation support (red colored real and
ghost particles).

144 Chapter 6. Particle-grid interpolation with a wall

The global P2M approach is validated by considering the same advection

field as Section 6.1.2, namely uadv = (Γadv/2πr) êθ, along with the same CFL

condition on ∆tadv. This velocity field is then extended using the tools of

Section 6.1.2. The flow particles are initialized with ωq = ω(xq, yq) and the

following error norms are defined

ǫ2
∆= ‖ǫ‖2 ∆=

h

ωgD



∑

i,j

(ω̃ij − ω(xi, yj))
2




1
2

ǫ∞
∆= ‖ǫ‖∞ ∆=

1

ωg
max

i,j
|ω̃ij − ω(xi, yj)| .

The grid convergence study results are shown in Fig. 6.12 (with 50 pseudo

time steps). Four cases are considered here:

• Case 1 : ε = 0.5 with analytically provided (∂ω/∂n)α and ωα.

• Case 2 : ε = 10−2 with analytically provided (∂ω/∂n)α and ωα.

• Case 3 : ε = 10−2 with analytically provided (∂ω/∂n)α, but ωα is

computed using the compatible extrapolation from Eq. (5.7), as would

be performed by a VPM method.

• Case 4 : placing the ghost particles exactly at the grid nodes (hence

they do not affect any grid node in the flow domain).

The rate of convergence for the L2-error norm is 2.04 (between N = 400 and

N = 800) and 2.01 for the L∞-norm for case 2 and case 3. These cases

nearly coincide, which is due to the fact that the compatible extrapolation

scheme to compute ωα is O(h4) and thus very accurate. Setting ε = 0.5 (case

1) significantly deteriorates the rate of convergence for the L∞-norm (1.26),

whereas the L2-error norm (1.75) is less affected, as previously claimed. For

case 4, the rate of convergence for the L2-error norm is 0.49 and the L∞-norm

does not converge at all (rate 0.00). This shows how a change in the ghost

particle position tremendously affects the convergence and the error level.

We do not recover the third order convergence of the M ′
4 interpolation kernel

(even for case 2 and case 3), since we use a linear extension along the normal,

as opposed to the quadratic extension from the M2P approach. Yet, we may

hardly increase the order of the approach, unless higher order derivatives are

also extended along the normal. The expression of these derivatives would

require computing cross derivatives along both grid directions at the control

6.2. Particle-to-mesh interpolation (P2M) 145

100 200 400 800

10
−6

10
−5

10
−4

10
−3

10
−2

N

ǫ 2

(a)

100 200 400 800

10
−5

10
−4

10
−3

10
−2

10
−1

N

ǫ ∞

(b)

Figure 6.12: Grid convergence study for the P2M interpolation procedure: (a) L2-
error norm and (b) L∞-error norm. The error norms are shown for case 1 (thin
dashed line with “∆”-signs), case 2 (thin solid line with “◦”-signs), case 3 (thin
solid line with “*”-signs) and case 4 (thin dash-dotted line with “ �”-signs); the
thick solid line shows a second order slope.

points. The advection term in the Hamilton-Jacobi Eq. (6.9) could also be

computed using an upwind space discretization of higher order, e.g. a WENO

scheme [115].

It should also be noted that this approach does not guarantee the incom-

pressibility of the velocity field inside the body. Enforcing this explicitly would

require solving a Poisson equation inside the body with a no-through flow con-

dition at the wall. This is actually exactly the same framework as for the outer

146 Chapter 6. Particle-grid interpolation with a wall

flow computation, and the tangential velocity would thus not necessarily fit

the prescribed wall velocity. Again, one may consider diffusing the resulting

slip velocity inside the body similarly to the outer flow computation and hence

obtain a smooth and incompressible extension of the velocity. All these steps

could be coupled to the outer flow computation.

Nevertheless, the above suggestion of improvement is maybe superfluous,

as the present approach still provides a ghost velocity field that is smooth in

practice and “follows the trends” of the outer flow field. This feature is of great

importance when considering that the ghost particle offsets with respect to the

grid should behave in a continuous manner for neighboring particles, so as to

provide a proper interpolation support for the grid points and hence avoid a

local convergence breakdown, as was observed for case 4 in Fig. 6.12.

6.2.2 Alternative approach

First, it should be observed that - even in an unbounded domain - P2M is

not the inverse of M2P, in the sense that interpolating a grid field to particles

and consequently remapping the information onto the grid does not lead to

the initial field (e.g. consider a discrete Dirac function defined on the grid and

a set of uniformly spaced particles with a non-zero offset with respect to the

grid).

Nevertheless, one could alternatively try to construct the P2M procedure by

pursuing this inversion idea, while allowing the addition of an unknown artificial

correction to the particles. Briefly, these corrections should be such that the

application of the original P2M scheme using the corrected particles provides

a remeshed grid field giving rise to the uncorrected set of particles through the

application of the M2P approach from Section 6.1.2. The resulting grid field

would then be the intended solution that satisfies the prescribed conditions

at the wall, by construction of the grids ghost that are implicitly required by

the M2P operation. The procedure thus does not strictly invert the M2P, but

rather provides a self-consistent tool for the remeshing operation. Iterations

are however required as the problem is global.

The algorithm can be summarized as follows in 1-D (see also Fig. 6.13):

• Initialization (k = 0): we have the set of real particles ωp, a set of

particle corrections ∆ωk
p = 0 (in the flow) and a set of ghost particles

∆ω̂k
p = 0 (in the body).

6.2. Particle-to-mesh interpolation (P2M) 147

• Iteration:

1. Compute the grid field ωk
j using the (uncorrected) P2M approach in

the flow domain, based on the particles (ωp + ∆ωk
p) and ∆ω̂k

p .

2. Compute the M2P grid ghosts for ωk
j (using the associated wall

data), according to Section 6.1.2.

3. Apply the M2P scheme to ωk
j and its ghosts, the result being ωk

p (in

the flow) and ω̂k
p (in the body).

4. Compute the new corrections as ∆ωk+1
p = ∆ωk

p + (ωp − ωk
p) and

∆ω̂k+1
p = ω̂k

p .

5. k ← k+1 and go back to step 1, unless the convergence for the error

|ωk
p − ωp| has been met.

xα

∆ω̂p ωp + ∆ωp

xjxp
αh

βh

Figure 6.13: Sketch of the alternative P2M approach.

The algorithm actually solely iterates over a few grid points near the wall,

the remainder of the grid nodes is pre-computed using the uncorrected P2M

procedure and frozen thereafter. Moreover, we overwrite the first grid node

value with an interpolation based on the wall data and the value at some other

nodes, so as to stabilize the iteration as much as possible.

Some preliminary tests show that this approach converges, except for some

pathological configurations of the grid nodes’ and particles’ positions with re-

spect to the grid (α and β). As shown in Fig. 6.14, the error diverges after tens

of iterations.

A thorough analysis of the algorithm would maybe enlighten the reasons

for this behavior. The advantage of the algorithm is that it is more prone to

be extended to higher order methods, as it is built in a complementary fashion

upon the M2P approach. Its stabilization would provide an interesting tool for

the reciprocal interpolation between the grid and the particles.

148 Chapter 6. Particle-grid interpolation with a wall

0

0.5

1

0

0.5

1
0

2

4

6

8

x 10
−3

ǫ ∞

α
β

(a)

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

k

ǫ ∞

(b)

Figure 6.14: Preliminary tests for the alternative P2M approach: (a) L∞-error
norm at k = 100 for different α (offset of the grid with respect to the interface) and
β (offset of the particles with respect to the interface); (b) Maximum L∞-error norm
observed for all (α, β) as a function of the iteration index k.

Chapter 7

Immersed interface vortex

particle-mesh solver

The aim of this chapter is to gather the tools that have been developed in

Chapter 4, 5 and 6, and to combine them into an immersed interface-enabled

vortex particle-mesh solver.

First, the remaining required numerical ingredients are detailed in Sec-

tion 7.1, along with the description of the time stepping algorithm. Secondly,

some results are given for the well-documented test case of the impulsively

started flow past a circular cylinder (Section 7.2.1). Next, the ability of the

solver to simulate the flow past an airfoil (Section 7.2.2) and the vortex shedding

induced by a cylinder (Section 7.2.3) are also demonstrated. As a perspective

of future development, Section 7.3 presents a possible way to account for an

outflow condition. Finally, some conclusions are drawn in Section 7.4.

7.1 Time stepping algorithm

Similarly to what has been done in Chapter 3, we describe here the algorithm

used in order to solve the 2-D Navier-Stokes equations in vorticity-velocity

formulation, using the previously developed immersed interface tools. The

numerical framework and the associated notations follow those of Chapter 3.

We focus here on the treatment of the unbounded domain and of the inner solid

body boundaries, as opposed to Chapter 3 where no body was present inside

the domain and the outer boundaries of the computational domain were solid

walls.

150 Chapter 7. Immersed interface VPM

Let us consider the computational domain defined by Ωcomp
∆= [xL, xR] ×

[yB, yT] with an associated cell-centered M×N grid of mesh size h (see Fig. 3.2).

For the sake of simplicity, the presence of a single and non-moving body is

assumed here, its boundary being described by ∂Ωb (hence u = ub = 0 on

∂Ωb). Moreover, we consider a constant free stream velocity field U∞. The set

of particles xp carrying a vorticity ωp is initialized at the grid node positions xij ,

thus particles also exist inside the body (yet, their vorticity is zero), following

the lines of the “immersed” interface/boundary approach. As a reminder, the

Lagrangian evolution of the particles is prescribed by the following ordinary

differential equations

dxp

dt
= up

dωp

dt
= ν

(
∇2ω

)
p

.

The time integration is again performed using a mid-point rule Runge-Kutta

2 scheme and the right-hand sides are computed on the grid, using (corrected)

finite differences. It is based on the DRK2-SUB time-stepping algorithm from

Appendix E. Yet, as the studies from Chapter 3 showed that all discussed

time integration algorithms (for the no-slip enforcing procedure) are first order

in time and provide a similar error level, any other choice would have been

equivalent. The required modifications are minor, since the computational

operations are identical and solely their chronology changes, basically.

The subscript g for a field f (with f = 0 inside the body) indicates a

“ghost augmented” field fg, i.e. f is complemented with a set of ghost values

inside the body in the vicinity of the boundary (the ghosts can be nodes or

particles depending on the nature of the discretization of f , that is fij or

fp). Furthermore, some wall data (required for the particle-mesh interpolation,

according to Chapter 6 and Appendix B) is defined over the control points xα

at the time tn

Un
α

∆=

{(
uα ,

∂u

∂ξ

∣∣∣∣
α

) ∣∣∣∣ ∀xα ∈ ∂Ωb , t = tn
}

Ln
α

∆=

{((
∇2ω

)
α

,
∂

∂ξ

(
∇2ω

)
α

) ∣∣∣∣ ∀xα ∈ ∂Ωb , t = tn
}

Wn
α

∆=

{(
ωα ,

∂ω

∂n

∣∣∣∣
α

) ∣∣∣∣ ∀xα ∈ ∂Ωb , t = tn
}

,

with ξ the current direction defined in Chapter 5 and n the normal direction.

7.1. Time stepping algorithm 151

The velocity values at the wall uα should be equal to zero at convergence;

however the residual slip is not fully canceled at a finite resolution and, as a

consequence, uα is computed and taken into account during the velocity M2P

interpolation, for consistency reasons.

The following scheme summarizes the adopted integration strategy and

some of the computational steps requiring a specific attention are described

thereafter:

Initialization :

1. Compute the signed distance function to the body (level set).

2. Compute the control points.

3. Precompute the immersed interface stencils : Poisson equation, vortex sheet

evaluation, diffusion and ghost weights for the M2P interpolation.

4. Construct the tree for the multipole method that is used in the unbounded

iteration of the Poisson solver.

5. Assemble the matrix for the Poisson solver.

Predictor : from tn to tn+ 1
2

∆= tn + 1
2
∆t

• Advection : ωn
ij

Poisson
−−−−−→ u

n
ij , Un

α

u
n
ij , Un

α
ghosts for M2P
−−−−−−−−−→ (ug)n

ij

(ug)
n
ij

M2P to x
n
p

−−−−−−−→ (ug)
n
p

x
n+ 1

2
p = x

n
p +

∆t

2
(ug)

n
p

• Diffusion : ωn
ij

∇
2(·)

−−−→
`

∇2ω
´n

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

α

= 0

ωn
ij ,

`

∇2ω
´n

ij
,

∂ω

∂n

˛

˛

˛

˛

n

α

= 0
wall data
−−−−−−→ Ln

α ,Wn
α

`

∇2ω
´n

ij
, Ln

α
ghosts for M2P
−−−−−−−−−→

`

∇2ωg

´n

ij
`

∇2ωg

´n

ij

M2P to x
n
p

−−−−−−−→
`

∇2ω
´n

p

ω
n+ 1

2
,∗

p = ωn
p +

∆t

2
ν

`

∇2ω
´n

p

ω
n+ 1

2
,∗

p , x
n+ 1

2
p , Wn

α
ghosts for P2M
−−−−−−−−−→ (ωg)

n+ 1
2

,∗
p

(ωg)
n+ 1

2
,∗

p

P2M from x

n+ 1
2

p
−−−−−−−−−−−→ ω

n+ 1
2

,∗

ij

• Near-wall diff. : ω
n+ 1

2
,∗

ij

Poisson
−−−−−→ u

n+ 1
2

,∗

ij , ∆γ
n+ 1

2
,∗

α

q̄n
α =

∆γ
n+ 1

2
,∗

α

∆t/2

SI diff.
−−−−→ (ωw)

n+ 1
2

ij

ω
n+ 1

2
ij = ω

n+ 1
2

,∗

ij + (ωw)
n+ 1

2
ij

152 Chapter 7. Immersed interface VPM

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

Poisson
−−−−−→ u

n+ 1
2

ij , U
n+ 1

2
α

u
n+ 1

2
ij , U

n+ 1
2

α
ghosts for M2P
−−−−−−−−−→ (ug)

n+ 1
2

ij

(ug)
n+ 1

2
ij

M2P to x

n+ 1
2

p
−−−−−−−−−→ (ug)

n+ 1
2

p

x
n+1
p = x

n
p + ∆t (ug)

n+ 1
2

p

• Diffusion : ω
n+ 1

2
ij

∇
2(·)

−−−→
`

∇2ω
´n+ 1

2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

α

= 0

ω
n+ 1

2
ij ,

`

∇2ω
´n+ 1

2

ij
,

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

α

= 0
wall data
−−−−−−→ L

n+ 1
2

α ,W
n+ 1

2
α

`

∇2ω
´n+ 1

2

ij
, L

n+ 1
2

α
ghosts for M2P
−−−−−−−−−→

`

∇2ωg

´n+ 1
2

ij

`

∇2ωg

´n+ 1
2

ij

M2P to x

n+ 1
2

p
−−−−−−−−−→

`

∇2ω
´n+ 1

2

p

ωn+1,∗
p = ωn

p + ∆t ν
`

∇2ω
´n+ 1

2

p

ωn+1,∗
p , x

n+1
p , W

n+ 1
2

α
ghosts for P2M
−−−−−−−−−→ (ωg)

n+1,∗
p

(ωg)
n+1,∗
p

P2M from x
n+1
p

−−−−−−−−−−→ ωn+1,∗
ij

• Near-wall diff. : ωn+1,∗
ij

Poisson
−−−−−→ u

n+1,∗
ij , ∆γn+1,∗

α

q̄
n+ 1

2
α =

∆γn+1,∗
α

∆t
SI diff.
−−−−→ (ωw)n+1

ij

ωn+1
ij = ωn+1,∗

ij + (ωw)n+1
ij

Redistribution : after nr time steps, reinitialize the set of particles.

In the present case, all computations were performed with nr = 1 (redis-

tribution occurs at every time step). While the core of the methodology has

been detailed in Chapters 4, 5 and 6, some additional comments about the

initialization are made in Section 7.1.1. Section 7.1.2 presents special features

concerning the Poisson solver and Section 7.1.3 describes the near-wall diffusion

of the vorticity flux. The term “SI diff.” appearing in the near-wall diffusion

step stands for “sub iteration diffusion” and the operation is detailed in the

latter section. Finally, the interpolation is further discussed in Section 7.1.4.

7.1.1 Initialization

The grid level set φij can be precomputed, since the body does not move in

the present case. When no analytical expression is available, this operation is

performed by computing the signed distance of the grid nodes with respect to

7.1. Time stepping algorithm 153

a set of line segments approximating the body geometry. It allows to easily

perform several operations, such as the identification of the control points or

the computation of the normal vectors, which is a well-known feature in the

literature about interface tracking methods.

Control points and normal vectors The control points are simply com-

puted as the roots of φij along the grid lines, which furthermore provides a

way to limit the number of control points per grid line segment (between two

adjacent nodes) to at most one item (accounting for more control points would

not make any sense since the body geometry is then clearly under resolved at

the grid level).

For bodies of complex geometry (where the level set and the normal vectors

are not known analytically), the normal vector nα = (∇φ/|∇φ|)α is computed

at the control points based on φij and using a corrected stencil. The level set

is continuous and differentiable across smooth boundaries and the nodes inside

the body can therefore be used for the stencil discretizing the first derivatives

of φ (∂φ/∂x and ∂φ/∂y). In case some sharp edges are present (e.g. an airfoil,

see Section 7.2.2), the level set is no longer differentiable. Yet, these edges

are naturally regularized by the level set computation (edges are geometrically

under resolved, no matter the grid resolution). The stencil computation is

based on the same approach as that for the wall velocity uα evaluation that

is detailed in Appendix B.2, except that all 1-D stencils (in the current and

transverse directions with respect to the associated control point) are chosen

to be as centered as possible around the control point, independently of their

intersection with the body boundary. The wall information required by the

immersed interface schemes is φα = 0, by definition.

Control point length scale for surface integration A length scale bα,k

associated to every control point xα,k can also be evaluated, based on the level

set and an immersed interface finite difference scheme (the index k covers all

control points in the x and y directions). The key idea is to take benefit of the

link that exists between the jump of the streamfunction normal derivative (and

hence the singular vortex sheet strength) and the “bulk vortex sheet” that is

a grid quantity and results from the immersed interface correction terms. In

a continuous context, the vortex singular sheet can be written by means of a

convolution as

ω∆γ(x) ∆=

∮

∂Ωb

∆γ(x′) δ(x− x′) dx′ .

154 Chapter 7. Immersed interface VPM

Once the problem has been discretized, the latter becomes a bulk quantity and

it can be seen as a mollification of the singular vortex sheet along the normal to

the boundary ∂Ωb. Considering the discretized Poisson equation ∇2Ψ = −ω,

it is here defined as

(
∇2Ψ

)h
ij

= −ωij −
∑

k∈Nij

(
−Jα,k

h2

)
∆= −ωij − (ω∆γ)ij ,

with
(
∇2Ψ

)h
ij

the classical 5-point stencil for the Laplacian, Jα,k the correction

terms (i.e. J+
α,k or J−

α,k) and Nij the subset of control points affecting the

stencil of the grid node xij , according to Chapter 4. And conversely, a given

control point xα,k induces corrections for the two neighboring nodes and hence

it contributes to the total bulk vortex sheet circulation by a quantity Γα,k
∆=

−h2 (J−
α,k + J+

α,k)/h2.

One may further assign a virtual panel of length bα,k to the control point

xα,k. Its circulation is then also accordingly bα,k∆γα,k (considering a panel

of uniform intensity), with ∆γα,k = −(∂Ψ/∂n)α,k the vortex sheet value at

xα,k. Both these circulations should match and an equivalent “numerical”

panel length can thus be defined as

bα,k
∆=

(J−
α,k + J+

α,k)
(

∂Ψ

∂n

)

α,k

, (7.1)

where (∂Ψ/∂n)α,k can be evaluated using the tools from the next Section 7.1.2.

The latter definition is however solution dependent and is ill-posed when the

vortex sheet is equal to zero. Moreover, it requires to solve the Poisson equation

in order to obtain the corrections.

A better approach, that does not require any Poisson solution and is well-

posed, consists in using the same definition Eq (7.1), however applied to the

level set φij . Indeed, this field naturally enjoys the necessary properties in order

to compute bα,k, as (∂φ/∂n)α,k = 1, by definition. Let us moreover consider

the following auxiliary function

ζ(x) ∆=





φ(x) if x ∈ Ωf ,

0 if x ∈ Ωb .

7.1. Time stepping algorithm 155

This function is continuous and presents a unitary normal derivative jump.

Computing the immersed interface corrections (Jζ)α,k associated to ∇2ζ (using

the fact that ζα,k = 0) directly yields the desired length scale

bα,k
∆= (Jζ)−α,k + (Jζ)+α,k .

The link between the vortex sheet and the correction terms remains valid here,

as ζ is the solution of an underlying Poisson equation (the source term of this

Poisson equation is simply ∇2ζ).

A grid convergence study is performed in order to verify if this definition

indeed corresponds to a natural length scale. The test case consists in com-

puting the perimeter of a circle of diameter D and centered at xc = (0, 0) in

a domain [−D, +D]× [−D, +D] discretized using a N ×N grid. The results,

presented in Fig. 7.1, show that the error ǫb
∆= |π−∑k bα,k/D| converges with

a second order slope (actually 1.97).

This length scale may for example be used as an integration measure for

contour integrals computed on the body wall (e.g. evaluation of the body

forces using the wall vorticity for the friction contribution and the vorticity

flux for the pressure contribution, cfr. [73]). The present formulation stands in

contrast with classical immersed boundaries, where the definition of consistent

integration measures can be problematic [44].

200 400 800
10

−4

10
−3

10
−2

N

ǫ b

Figure 7.1: Grid convergence study for the evaluation of the perimeter of a circle
using the length scales bα,k: present error (thin solid line with “◦”-signs) and second
order slope (thick solid line).

156 Chapter 7. Immersed interface VPM

7.1.2 Poisson solver

The streamfunction Ψ is computed by applying the methodology developed in

Chapter 4. The circulation of the “bulk vortex sheet” (ω∆γ)ij (associated to

the incremental vortex sheet ∆γ) has to be prescribed and, also following [72],

Kelvin’s theorem must be enforced in order to complete the problem statement

(see Appendix D). For a non-rotating body, this corresponds to

∆Γ ∆=

∮

∂Ωb

∆γ(x′) dx′ = 0 ,

and
∫

R2 ω(x′) dx′ = 0 holds anyway (as all the vorticity is generated at solid

walls). The sequence of immersed interface operations being not strictly conser-

vative (at convergence, it should be the case, though), a correction is required

and, if we further assume that the vorticity support is entirely included inside

the computational domain, we can impose that the total circulation is equal to

zero

∑

i,j

(
ωij + (ω∆γ)ij

)
h2 = 0 . (7.2)

Before solving the Poisson equation, notice that the vorticity is processed on

the outer boundaries of the computational domain ∂Ωcomp using a smooth cut-

off function, such that ω = 0 on ∂Ωcomp. This treatment clearly induces a loss

of circulation when the vorticity reaches the outer boundaries, at the outflow

plane. Nevertheless, it does not seem to influence the solution too much when

the outflow plane is far from the body, according to [109] where the flow past

a cylinder was studied using a penalized VPM method (the forces and the

Strouhal number are in good agreement with reference studies). Note that the

vorticity support is then no longer entirely included inside the computational

domain. One could therefore think of a way to track the circulation that has

crossed the outflow plane, so as to still enforce zero total circulation in the

framework of the above correction Eq. (7.2).

We further mention that the previous solution and outer boundary condition

(recall that this is an unknown too, in the present methodology) are reused as

a first guess during the Miller iteration (see Section 4.3.3), so as to improve the

convergence and hence to minimize the number of calls to the linear solver per

Poisson solution. In practice, this number is equal to 3 or 4, when the flow is

fully established.

7.1. Time stepping algorithm 157

Once the streamfunction is computed, the velocity is obtained using the

corrected schemes from Appendix B.1. The vortex sheet evaluation, that is

required for the vorticity flux, is based on the same stencils as those used for

uα, it is given by

∆γα = −nξ

(
∂Ψ

∂ξ

)

α

− nη

(
∂Ψ

∂η

)

α

,

where η is the transverse direction. The evaluation of the vortex sheet is

illustrated in Figure 7.2 for an impulsively started cylinder at t = 0+ (us-

ing h/D = 5 · 10−3 with h the mesh size and D the cylinder diameter; see

Section 7.2.1 for a more detailed case description) and it is compared to the

analytical vortex sheet of a potential flow past a cylinder that represents the

initial condition of such an impulsively started flow. The maximum observed

error on ∆γ/U∞ is 7.254 · 10−5.

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ/π

∆γα

U∞

Figure 7.2: Wall vortex sheet at t = 0+ for the impulsively started cylinder flow, as
a function of the angle θ (θ = 0 downstream of the cylinder) : present (red ∗) and
analytical (solid black line).

7.1.3 Near-wall diffusion

The near-wall diffusion step is performed using a sub-iteration procedure, in

order to better capture the near-wall vorticity field. Considering the predictor

step (the corrector is treated similarly), we start from (ωw)
n+ 1

2 ,0
ij = 0 and we

158 Chapter 7. Immersed interface VPM

compute the following Euler scheme using Nsub sub steps

(ωw)
n+ 1

2 ,k+1
ij = (ωw)

n+ 1
2 ,k

ij +
∆tsub

2
ν
(
∇2ωw

)n+ 1
2 ,k

ij
,

with ∆tsub
∆= ∆t/Nsub. The Laplacian is computed using corrected finite dif-

ferences with a compatible extrapolation scheme in order to prescribe the flux

q̄n
α at every control point (see Chapter 5). The same compatible extrapolation

scheme is also used to compute the zero flux diffusion step. The value Nsub = 5

is adopted here for the applications presented in Section 7.2.

Nothing particular is done in order to ensure the strict conservation of cir-

culation during this step, since the approach intrinsically computes field values

ω pointwise, as opposed to the intensity
∫

ω dx used in classical vortex meth-

ods. Yet, the conservation of circulation is obtained at convergence, thanks to

the accuracy of the resulting vorticity field.

Nevertheless, the combination of this near-wall diffusion solver and the im-

mersed interface Poisson solver is not fully consistent. The reason for this

resides in the fact that the Poisson solver does not really “feel” the presence of

the solid wall, in the sense that it only sees the corrections in the form of the

grid bulk vortex sheet (ω∆γ)ij , in addition to the “real” flow vorticity ωij .

The intrinsic integration support associated to a given node vorticity ωij is

the area h2 and its circulation is hence ωijh
2, whether it crosses the boundary

or not. As an illustration of this assertion, consider the following small numer-

ical test. Let us consider a vorticity field consisting of a discrete singularity of

circulation Γ0 at an arbitrary grid node xmn (thus ωij = Γ0δimδjn/h2). Now,

compute the associate velocity field uij (by solving the Poisson equation with

the immersed interface corrections at the wall) and compute the resulting cir-

culation
∮
C u · dx where C is a rectangle aligned with the grid, enclosing the

body and the node xmn (e.g. using a trapezoidal rule for the integration).

Regardless of the position of xmn with respect to the interface, this measured

circulation is then Γ0 up to the solver tolerance.

As a consequence, the Poisson solver treats the vorticity as a cell-averaged

quantity, whereas the near-wall diffusion uses it as a pointwise quantity (re-

member that the streamfunction solution has a pointwise meaning, by con-

struction). What makes the link between both perspectives is precisely the

bulk vortex sheet. The bulk vortex sheet basically has two contributions, one

coming from the actual vortex sheet ∆γ and the other one complementing and

correcting the flow vorticity intensity ωijh
2, due to the intersection of the ir-

7.1. Time stepping algorithm 159

regular cells with the boundary. Yet, computing this decomposition explicitly

is hardly achievable. This is another reason to impose the total circulation,

Eq. (7.2) (flow vorticity and bulk vortex sheet), as opposed to imposing the

bulk vortex sheet circulation alone.

7.1.4 Particle-mesh interpolation

The M ′
4 interpolation kernel is used here for the mapping operations. Comput-

ing the ghosts relies on the techniques developed and presented in Chapter 6.

The wall data sets Uα and Lα required for the M2P ghost computation of u and

∇2ω are obtained using the schemes from Appendix B.2. Figure 7.3 illustrates

the resulting ghost velocity field (ug)
n
ij for an impulsively started cylinder at

Re = 550 (see Section 7.2.1 for the case description).

Figure 7.3: Velocity ghost field (ug)
n
ij/U∞ for an impulsively started cylinder at

T = 3 and for Re = 550: (ug)
n
ij/U∞ (top) and (vg)

n
ij/U∞ (bottom).

160 Chapter 7. Immersed interface VPM

7.2 Results

Section 7.2.1 describes the test case about an impulsively started cylinder,

Section 7.2.2 provides simulation results for an impulsively started airfoil and

Section 7.2.3 shows the ability of the solver to capture unsteady phenomena at

the wall that are not limited to the starting phase, but that carry on in the

flow regime (vortex shedding induced by the flow past a cylinder).

7.2.1 Impulsively started cylinder

The flow past an impulsively started cylinder offers a convenient framework for

the validation of the present immersed interface vortex particle-mesh solver. It

has been studied extensively both theoretically [30, 29, 5] and computationally

in Koumoutsakos and Leonard [73] and Ploumhans and Winckelmans [102]

(referred to as KL and PW respectively). The simulation of this type of flow is

particularly challenging, as the initial acceleration - and hence also the initial

force - is infinite. The following expression of the drag coefficient [5], valid for

short times, shows the associated singularity behaving like t−1/2, which makes

the simulation under resolved in time, regardless of the chosen time step ∆t:

CD
∆=

F · v̂
1
2ρU2∞D

= 4
(π

Re T

) 1
2

+ 2π

(
9− 15

π
1
2

)
1

Re
, (7.3)

where F is the force per unit length acting on the cylinder, U∞
∆= U∞ v̂ the

upstream velocity field, D the diameter of the cylinder, ρ the fluid density,

T ∆= U∞t/D the dimensionless time, Re ∆= U∞D/ν the Reynolds number with

ν the kinematic fluid viscosity. The linear impulse I of the fluid in the flow

direction resulting from Eq. (7.3) then reads

I · v̂
U∞D2

∆=
1

U∞D2
v̂ ·
∫

Ωf

x× (ωêz) dx (7.4)

= −4

(
πT

Re

) 1
2

− π

(
9− 15

π
1
2

)
T

Re
− π

2
,

as F = −ρ dI/dt.

Vortex methods relying on Lighthill’s model for the no-slip enforcement, as

discussed in Chapter 3, are particularly well-suited for the simulation of im-

pulsively started flows, thanks to the proper computation of the vortex sheet,

that is subsequently diffused to determine the vorticity/circulation that must

7.2. Results 161

enter the flow at every time step, as the vortex sheet determines the wall vor-

ticity flux. The study of the present test case using purely Lagrangian vortex

methods [73, 102] indeed show that the resulting global diagnostics (the forces

and the linear impulse), as well as the locally computed data (wall vorticity,

wall flux, etc.) agree well with the theoretical predictions and reference com-

putations.

According to the remarks that have been made in Section 7.1.3, the com-

putation of the linear impulse of the flow for the present methodology must

include the vorticity associated to the bulk vortex sheet, as follows

In =
∑

i,j

xij × êz

(
ωn

ij + (ω∆γ)n
ij

)
h2 ,

similarly to the computation of the total circulation. Indeed, on the one hand,

(ω∆γ)ij contains a contribution of the flow vorticity, as previously explained,

and, on the other hand, the vortex sheet is a component of the flow (in the

sense of Lightill’s model). The integration support for each grid node is again

h2, as it was already the case for the added mass evaluation from Section 4.4.2.

The case Re = 550 is studied here in a computational domain [−D; 6D]×
[−1.5D; 1.5D], using a 1400× 600 grid (the mesh size is thus h/D = 5 · 10−3).

The cylinder is centered at the origin xc = (0, 0). The time step is set to ∆T ∆=

U∞∆t/D = 2.5 · 10−3, which leads to a Fourier number r ∆= ν∆t/h2 = 0.182.

The ghost computation for the velocity M2P interpolation (see Chapter 6) is

switched on after 50 time steps, i.e. before that, the ghost velocity is set to

zero. This is required, as the abrupt acceleration of the body may lead to the

generation of some low amplitude noise in the near-wall vorticity field, that can

be amplified by the interpolation procedure.

Fig. 7.4 shows the x-component of the linear impulse (i.e. in the flow direc-

tion), as a function of T . A comparison is made between the present approach,

the results from Ploumhans and Winckelmans [102] (a purely Lagrangian vor-

tex method) and the analytical solution Eq. (7.4). The computations reported

from [102] correspond to the “G+V” approach (here referred to as PW1) and to

the “KL”-like approach (here PW2) defined therein. Both approaches compute

the diffusion term by means of the PSE scheme [41] with a zero-flux condition

at the wall and the particle redistribution near the wall is carried out using

one-sided schemes. A vortex panel method is used for the no-through flow ve-

locity computation and explicit integral formulas for the near-wall diffusion (see

162 Chapter 7. Immersed interface VPM

Appendix E.8 for a detailed review of these formulas). Basically, the “G+V”

approach uses “random vibrations” at each redistribution and the “KL”-like

approach uses a “body fitted” grid (based on polar coordinates) that follows the

cylinder boundary for the redistribution (the redistribution technique is close

to what is done in Koumoutsakos and Leonard [73], hence the name “KL”-like).

The different computational setups are summarized in Table 7.1.

h/D ∆T nr denom. in [102]

Present 5 · 10−3 2.5 · 10−3 1 -

PW1C-550 6.03 · 10−3 1 · 10−2 5 “G+V”

PW1F-550 3.015 · 10−3 2.5 · 10−3 5 “G+V”

PW2C-550 6.03 · 10−3 1 · 10−2 5 “KL”-like

Table 7.1: Comparison of the numerical parameters used for the present approach
and for the reference results from Ploumhans and Winckelmans [102] at Re = 550
(redistribution is performed every nr time steps).

The Fourier number for the 3 computations from [102] is r = 0.5, which is

stable, since the time integration of the vorticity equation is there performed

using a first order Euler scheme.

Results are given for short times in Fig. 7.4(a). The immersed interface

VPM solver seems to agree well with all results, particularly with the coarser

cases PW1C-550 and PW2C-550. This makes sense, as the spatial resolution

is nearly identical in both cases (the present time resolution is higher, though).

Note that the mesh size for the present approach has been chosen as the closest

“round” value close to that from PW1C-550 and PW2C-550 for the sake of

simplicity.

As expected, the initial phase gives rise to larger oscillations, due to the sin-

gular nature of the flow at t = 0+. Yet, the present approach seems to capture

this phase as well as the case from [102] with the finer resolution (PW1F-550).

Another point that deserves attention is the very accurate capture of the initial

impulse value (at t = 0+), which corresponds to the impulse of a potential flow.

This further justifies the above evaluation of the impulse, as it only consists

of the bulk vortex sheet contribution at that time (there is no other vorticity

present in the flow).

Fig. 7.4(b) provides the results for long times, by comparing the present

approach to the PW2C-550 computation (analytical expressions are lacking

7.2. Results 163

at such times). The PW2C-550 is considered as a reference here, since the

redistribution is performed using a “body fitted” grid, as mentioned above.

This type of wall treatment is more accurate but it can hardly be applied to

more complex geometries. In the early phase, both curves are indistinguishable

and a small difference appears later, which could be explained by the first order

time integration used for the vorticity in Ploumhans and Winckelmans [102].

The same comparison is also made for the drag coefficient in Fig. 7.5. The

analytical solution corresponds to Eq. (7.3) whereas, for the numerical studies,

the computation of the force is based on the time derivative of the impulse,

which is here evaluated using centered second order finite differences. One must

keep in mind that the drag coefficients from Ploumhans and Winckelmans [102]

have been obtained by first filtering the impulse signal using a five-point moving

average prior to the numerical differentiation. On the contrary, the present

results do not rely on any filtering. Again, results seem to agree quite well,

except for the very first time steps, where larger oscillations are present. The

long time evolution is captured quite well.

In Fig. 7.6, some iso contours of the vorticity field at various times are

compared to the results from PW1C-550. Results are very similar, except for

some small differences in the near wake (at T = 3, there is no local maximum

at x/D ∼ (1.25;±0.2) for the present approach; and at T = 3 and T = 5,

the vorticity maxima at the recirculation centers are slightly different). Those

discrepancies could be explained by the higher redistribution frequency applied

in the present approach (the redistribution period is ∆T r = 2.5 · 10−3 for

the present computation, ∆T r = 5 · 10−2 for PW1C-550 and PW2C-550, and

∆T r = 1.25 · 10−2 for PW1F-550). Fig. 7.7 further shows a close-up view of

the vorticity in the downstream part of the flow.

The immersed interface approach also allows to compute the vorticity at

the wall, based on the vorticity flux at every control point, according to the

tools that have been developed in Chapter 5. Fig. 7.8 shows a comparison at

T = 1 with the results from Koumoutsakos and Leonard [73], referred to as

the “KL” approach (it has to be distinguished from the “KL”-like approach

PW2). The vorticity maximum present some high-frequency noise, compared

to the KL methodology. Yet, both curves are in good agreement, keeping in

mind that the KL computation uses a body-fitted grid for the redistribution

and that an accurate capture of field values at the wall remains challenging for

vortex particle-mesh methods.

164 Chapter 7. Immersed interface VPM

0 0.05 0.1 0.15 0.2 0.25
−1.75

−1.7

−1.65

−1.6

−1.55

T

Ix

U∞D2

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

T

Ix

U∞D2

(b)

Figure 7.4: Linear impulse for the impulsively started cylinder flow at Re = 550;

(a) short time comparison : present (red ∗), PW1C-550 (◦), PW1F-550 (∆), PW2C-
550 (green +) and analytical Eq. (7.4) (solid line); (b) long time comparison :
present (red dash-dotted line) and PW2C-550 (solid line).

7.2. Results 165

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

T

CD

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

CD

(b)

Figure 7.5: Drag coefficient for the impulsively started cylinder flow at Re = 550;

(a) short time comparison : present (red ∗), PW1C-550 (◦), PW1F-550 (∆), PW2C-
550 (green +) and analytical Eq. (7.3) (solid line); (b) long time comparison :
present (red dash-dotted line) and PW2C-550 (solid line).

166 Chapter 7. Immersed interface VPM

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

Figure 7.6: Iso contours of vorticity ωD/U∞ for T = 1, 2, 3, 4 and 5 (top to bottom)
for the impulsively started cylinder flow at Re = 550: present (left) and PW1C-550
(right; figures are reproduced from Ploumhans and Winckelmans [102]). Levels are
by steps of 2 (ω = 0 is skipped).

7.2. Results 167

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

Figure 7.7: Zoom on the vorticity field ωD/U∞ at T = 1, 2, 3, 4 and 5 (top to bottom)
for an impulsively started cylinder flow (Re = 550).

168 Chapter 7. Immersed interface VPM

−1 −0.5 0 0.5 1
−80

−60

−40

−20

0

20

40

60

80

θ/π

ωD

U∞

Figure 7.8: Wall vorticity ωD/U∞ for the impulsively started cylinder flow at Re =
550 and at T = 1: present (red ∗) and KL (solid line).

Some results are also shown for the case Re = 3000. The computational

domain is here [−D; 2D] × [−D; D] with a 1875 × 1250 grid (thus h/D =

1.6 · 10−3). The time step ∆T = 1 · 10−3 leads to a Fourier number r = 0.130

and the ghost computation for the velocity interpolation procedure is switched

on after 50 time steps, similarly to the case at Re = 550.

Fig. 7.9 shows the linear impulse in the x direction and Fig. 7.10 provides the

drag coefficient. Again, we compare the impulse and the drag coefficient with

the results from Ploumhans and Winckelmans [102], for the same approaches

PW1 and PW2 (see Table 7.2 for the computational setups). For this Reynolds

number, the differences between the various curves become more important,

especially for the drag coefficient.

h/D ∆T nr denom. in [102]

Present 1.6 · 10−3 1 · 10−3 1 -

PW1-3000 1.87 · 10−3 5 · 10−3 5 “G+V”

PW2-3000 1.87 · 10−3 5 · 10−3 5 “KL”-like

Table 7.2: Comparison of the numerical parameters used for the present approach
and for the reference results from Ploumhans and Winckelmans [102] at Re = 3000
(redistribution is performed every nr time steps).

7.2. Results 169

The present approach captures quite well the starting phase for the impulse,

which is due to the five time smaller time step, compared to the results from

Ploumhans and Winckelmans [102]. The short time evolution of Ix presented in

Fig. 7.9(a) seems to indicate that the immersed-interface VPM solver and the

PW1 approach (and also PW2) begin to differ at T ≃ 0.15, whereas the long

time evolution in Fig. 7.9(b) shows that the results are still in good agreement

for longer times.

Capturing the drag coefficient correctly is more challenging, as can be seen

in Fig. 7.10(b). The PW1 and the PW2 approaches appear to disagree, with

PW1 being noisier. The present methodology differs from PW2 at about the

same moment as PW1. The peak around T ≃ 2 is under predicted by the

present approach, however the kinks observed at T ≃ 0.2, 1.35 and 2.2 for both

PW1 and PW1 do not occur here.

Concerning the iso contours of vorticity in Fig. 7.11, the immersed interface

solver and PW1-3000 seem to agree very well until T = 2 and, apart from

fine scale details, no real differences are observed. From T = 3 on, some

discrepancies occur in the recirculation zones, which may also be linked to the

present higher redistribution frequency which results in an increased diffusion.

Fig. 7.12 again provides a close-up view of the vorticity in the downstream part

of the flow.

170 Chapter 7. Immersed interface VPM

0 0.05 0.1 0.15 0.2 0.25

−1.64

−1.62

−1.6

−1.58

−1.56

T

Ix

U∞D2

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

T

Ix

U∞D2

(b)

Figure 7.9: Linear impulse for the impulsively started cylinder flow at Re = 3000;
(a) short time comparison : present (red ∗), PW1-3000 (◦), PW2-3000 (green +) and
analytical Eq. (7.4) (solid line); (b) long time comparison : present (red dash-dotted
line), PW1-3000 (blue dashed line) and PW2-3000 (solid line).

7.2. Results 171

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

CD

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

CD

(b)

Figure 7.10: Drag coefficient for the impulsively started cylinder flow at Re = 3000;
(a) short time comparison : present (red ∗), PW1-3000 (◦), PW2-3000 (green +) and
analytical Eq. (7.3) (solid line); (b) long time comparison : present (red dash-dotted
line), PW1-3000 (blue dashed line) and PW2-3000 (solid line).

172 Chapter 7. Immersed interface VPM

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Figure 7.11: Iso contours of vorticity ωD/U∞ for T = 1, 2, 3 and 4 (top to bottom)
for an impulsively started cylinder flow at Re = 3000: present (left) and PW1-3000
(right; figures are reproduced from Ploumhans and Winckelmans [102]). Levels are
by steps of 4 (ω = 0 is skipped).

7.2. Results 173

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

0 0.25 0.5 0.75
0

0.25

0.5

0.75

Figure 7.12: Zoom on the vorticity field ωD/U∞ at T = 1, 2, 3 and 4 (top to bottom)
for an impulsively started cylinder flow (Re = 3000).

174 Chapter 7. Immersed interface VPM

7.2.2 Flow past an impulsively started NACA0021 airfoil

In this section, we study the ability of the immersed interface VPM solver to

simulate the impulsively started flow past a NACA0021 airfoil in a high angle

of attack (and stalled) configuration. The Reynolds number based on the chord

c is taken as Re ∆= U∞c/ν = 500 and the angle of attack is given by α = 20°.

The computational domain is [−0.25 c; 2.75 c]× [−c; c] with a 1200× 400 grid

(h/c = 2.5 · 10−3) and the time step is ∆T ∆= U∞∆t/c = 5 · 10−4 (r = 0.160).

Fig. 7.13 shows the vorticity field at T ∆= U∞t/c = 0.1, 0.5, 1 and 1.5.

One may recognize the initial creation of the starting vortex associated to the

lift generation. Once it has gained its full intensity, the starting vortex is

advected downstream towards the outflow plane. Capturing this phenomenon

properly is challenging, since, in addition to the drag singularity occurring

at T = 0+ (such as for the impulsively started cylinder), the initial velocity

field is moreover singular at the sharp trailing edge. The latter corresponds to

the potential flow field obtained with zero circulation around the airfoil, which

does not satisfy the Kutta-Joukowsy condition. Fig. 7.14 shows that the vortex

sheet (thus the tangential velocity) at T = 0+ is indeed singular at the trailing

edge. Hence, a separation point appears initially on the suction side near the

trailing edge (at T = 0+ this point is even a stagnation point). The near-wall

diffusion process instantaneously regularizes the velocity field at T = 0+ and

the separation point moves further downstream until it reaches the trailing

edge.

Fig. 7.15 further details this process by showing first the streamlines at

T = 0+, along with the stagnation point and the associated “bulk vortex

sheet” grid field ωγ (the support for this field is the set of irregular points

according to Chapter 4). Secondly, the vorticity field is visualized together

with the streamlines at several times. At early times, the problem is under

resolved in this area and the displacement of the separation point is hardly

captured. The higher vorticity (in absolute value) on the suction side in the

vicinity of the trailing edge at T = 0.1 reflects the unsteady regime of the flow

around the trailing edge and is partly due to the starting vortex, that is still

close to this region at this time. Note that, for an attached steady flow past

an airfoil, the vorticity integrals over the pressure and suction sides should be

equal.

7.2. Results 175

Figure 7.13: Vorticity field ωc/U∞ for an impulsively started NACA0021 airfoil at
an angle of attack α = 20° and at Re = 500 (top to bottom : T = 0.1, 0.5, 1 and 1.5).

176 Chapter 7. Immersed interface VPM

0 0.5 1 1.5 2
−4

−2

0

2

4

6

8

s/c

∆γα

U∞

Figure 7.14: Wall vortex sheet at T = 0+ for an impulsively started NACA0021
airfoil at an angle of attack α = 20° (Re = 500) (as a function of the curvilinear
coordinate s; s = 0 at the trailing edge and s is positive for a counterclockwise rota-
tion).

A separation zone appears on the suction side, which can be seen in Fig. 7.13

from T = 0.5 on. A close-up view with the streamlines is provided in Fig. 7.16,

showing the growing of the separation bubble from T = 0.8 to T = 1.2. More-

over Fig. 7.17 shows some diagnostics, such as the linear impulse Ix, Iy and

the force coefficients defined by

CD
∆=

Fx

1
2ρU2∞c

, CL
∆=

Fy

1
2ρU2∞c

.

Both coefficients are computed based on the time derivative of the impulse, as

was the case in Section 7.2.1. The evolution of the diagnostics after T = 1.5 is

not shown here, as some of the vorticity leaves the domain.

7.2. Results 177

T = 0+ T = 0.005

T = 0.01 T = 0.05

T = 0.1 T = 0.5

Figure 7.15: Zoom of the streamlines in the trailing edge region of an impulsively
started NACA0021 airfoil at an angle of attack α = 20° (Re = 500), along with the
bulk vortex sheet ωγ at T = 0+ (with ◦ the stagnation point; top left figure) and the
vorticity field ωc/U∞ at various times (the color legend is different for the vorticity
and for the bulk vortex sheet).

178 Chapter 7. Immersed interface VPM

Figure 7.16: Vorticity field ωc/U∞ and streamlines for an impulsively started
NACA0021 airfoil at an angle of attack α = 20° (Re = 500) (top to bottom :
T = 0.8, 1 and 1.2; the iso-values of Ψ for the streamlines are not equidistant and
the steps follow a geometric progression around Ψ = Ψ, the streamfunction constant
corresponding to the body, see Chapter 4).

7.2. Results 179

0 0.5 1 1.5
−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

T

Ix, Iy

(a)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

CD, CL

(b)

Figure 7.17: Diagnostics for an impulsively started NACA0021 airfoil at an angle
of attack α = 20° and at Re = 500 : (a) linear impulse Ix (solid line) and Iy (dashed
line); (b) force coefficients CD (solid line) and CL (dashed line);

180 Chapter 7. Immersed interface VPM

7.2.3 Flow past a cylinder at Re = 100

In this section, the flow past a cylinder at Re = 100 is studied. A 800 × 300

grid is used here for the simulation and the computational domain is given by

[−3D; 13D]× [−3D; 3D] (h/D = 2 ·10−2 and ∆T = 5 ·10−3, hence r = 0.125).

As the present simulation is performed for very long times, the vorticity

support is much bigger than the domain. The correction Eq. (7.2) on the

bulk vortex sheet is therefore no longer valid, since the circulation inside the

computational domain is not necessarily equal to zero. In order to circumvent

this issue, the cylinder is here placed symmetrically with respect to the grid

(up-down). As a consequence, we can simply enforce
∑

ij (ω∆γ)ij h2 = 0.

This is not allowed for an asymmetric configuration, as it leads to a flow

circulation
∑

ij ωijh
2 that may become significantly different from zero, in the

long term (even if the vorticity is entirely included in the domain). Indeed,

the numerical errors may be biased on the top or the bottom side of the body,

depending on the body position with respect to the grid, and the associated

spurious generation of circulation has been observed to be self-sustaining (i.e.

it is unstable). The correction Eq. (7.2) avoids this behavior and is applicable,

as long as the entire vorticity is inside the computational domain.

The symmetry adopted in the present case ensures that any error made on

the one side of the cylinder is also made on the other side and the drift of

the flow circulation is prevented. In an asymmetric configuration where the

vorticity is not entirely included in the domain, one could think of tracking

the circulation that leaves the domain, as mentioned in Section 7.1.2. Hence,

Eq. (7.2) would remain valid on condition that the tracked circulation is also

accounted for. We leave this as a subject for future investigation.

Let us now come back to the topic of this section. Starting from any initial

condition, the wake naturally becomes unstable after a certain time and the

flow enters the well-known regime of “vortex shedding”. The time evolution of

the flow is then dominated by a single frequency f that is further characterized

by the non-dimensional “Strouhal number”

St ∆=
U∞f

D
,

where D is the cylinder diameter.

The vorticity field is shown in Fig. 7.18 at various times during the transition

phase towards the established vortex shedding regime. The successive stages

correspond to a sampling of approximately twice the shedding period. The

7.2. Results 181

actual oscillation frequency in the transition phase does not match the Strouhal

number yet, since one may observe that the wake is slightly shifted between

two consecutive stages.

The force computation based on the flow linear impulse is also no longer

valid, for the same reason as above (the vorticity is not entirely included in the

computational domain). The approach from Noca et al. [96, 97] is therefore

adopted, as was already the case in Chapter 2. It results from a force balance

over a control volume VCV including the body ∂Ωb (and with outer boundary

SCV) and it only requires computing surface integrals over SCV and ∂Ωb (i.e.

contour integrals in 2-D). Furthermore, it does not involve the pressure, which

makes the approach well-suited for vortex methods. The force F applied on

the body reads

F

ρ
= − 1

N − 1

d

dt

∫

SCV+∂Ωb

(
(u · x)n− u(x · n) + (N − 1)x(u · n)

)
dx

+

∫

SCV

(
1

2
(u · u)n− (n · u)u

)
dx

− 1

N − 1

∫

SCV

(n · u)(x× ω) dx +
1

N − 1

∫

SCV

(n · ω)(x× u) dx

+
1

N − 1

∫

SCV

x× (n×∇ ·T) dx +

∫

SCV

n ·T dx,

+
1

N − 1

d

dt

∫

∂Ωb

x× (n× u) dx−
∫

∂Ωb

n · u dx ,

where T = ν
(
∇u + (∇u)T

)
and N = 2 is the number of dimensions. All

contour integrals over ∂Ωb vanish, since u = 0 at the wall and, in 2-D, we have

n ·ω = 0 which further cancels the fourth integral. The present control volume

is represented in Fig. 7.18.

Fig. 7.19 shows the resulting lift and drag coefficients (CL and CD, the

associated definitions have been provided in Section 7.2.1) as a function of the

time T and Table 7.3 provides the time averaged drag, the amplitude of the

lift coefficient (∆CL
∆= 0.5(max(CL) − min(CL))) and the Strouhal number,

along with some reference results from the literature. Despite the fact that the

computational domain is quite short (13 diameters downstream of the cylinder)

and that much of the circulation is lost, the three diagnostics are in very good

agreement with those of the literature.

182 Chapter 7. Immersed interface VPM

Figure 7.18: Vorticity field ωD/U∞ for the flow past a cylinder at Re = 100 (top
to bottom : T = 140, 152, 164 and 176). In the top figure, the control volume VCV for
the force computation [96, 97] is also represented (dashed box).

7.3. Accounting for an outflow condition 183

CD ∆CL St

Present 1.34 0.34 0.166

Rossinelli et al. [109] 1.35 0.33 0.166

Kevlahan et al. [67] 1.35 0.27 0.168

Shiels et al. [114] 1.33 0.30 0.167

Table 7.3: Time averaged drag (CD), lift amplitude (∆CL) and Strouhal number for
the flow past a cylinder at Re = 100; comparison between the present approach and
reference results from the literature.

290 300 310 320 330
−0.5

0

0.5

1

1.5

T

CD, CL

Figure 7.19: Lift and drag coefficients (CL, dashed; CD, solid) for the flow past a
cylinder at Re = 100.

7.3 Accounting for an outflow condition

As a perspective of future development, one could use an “outflow condition”

instead of simply neglecting the vorticity that leaves the domain. It is obtained

by accounting for an image vorticity field that corresponds to an even symmetry

across the outflow plane of the actual vorticity field in Ωcomp, hence ∂ω/∂x =

0 at x = xR in the present case (leading also to ∂u/∂x = 0 and v = 0).

This coincides with the “through flow plane” used in [28] for space-developing

simulations (yet, one would then still need to track the “lost circulation” for the

correction Eq. (7.2), especially for bodies with a non-negligible lift component).

184 Chapter 7. Immersed interface VPM

Considering the developments made in Chapter 4, handling such a through

flow plane is compatible with the present Poisson solver. First, note that the

symmetry on ω further entails that ∂Ψ/∂x = 0 at the outflow plane x = xR.

Hence, at the outflow plane, the Dirichlet boundary condition from Chapter 4

must be replaced by the Neumann condition ∂Ψ/∂n = 0 for all sub steps of

the algorithm. As a consequence, there is no longer an artificial vortex sheet

γcomp at x = xR after the first step of the algorithm computing the solution

using Ψ = 0 on the outer boundary of the domain (except for the outflow

plane, where ∂Ψ/∂n = 0 must now be imposed). Yet, γcomp 6= 0 on all 3 other

edges of the outer boundary. Finally, one must then take into account the

“images” of γcomp and ∆γ across x = xR (in Chapter 4, the latter was noted

γ) while one performs the iterative computation of the Dirichlet boundary

condition using the fast summation technique. The obtained streamfunction

consequently satisfies the aforementioned outflow condition. Fig. 7.20 sums up

this procedure and further illustrates the spatial configuration of the source

images. Note that adapting the computation of the diffusion and the particle-

mesh interpolation is straightforward (cfr. the tools from Section 3.2 so as to

account for ∂ω/∂n = 0 at x = xR).

xL xR

yT

yB

∆γ

γcomp ∂Ψ

∂n
= 0

∂ω

∂n
= 0

Figure 7.20: Illustration of the configuration that is required when accounting for an
outflow condition: both ω and Ψ are even across x = xR and the vortex sheets γcomp

and ∆γ have a symmetric counterpart across x = xR.

7.4 Conclusions

The present methodology allows to accurately perform the simulation of some

challenging flows, such as the flow past an impulsively started solid body. The

results agree quite well with those of purely Lagrangian and panel-based VP

7.4. Conclusions 185

(vortex particle) approaches [73, 102, 103]. In addition, no time-filtering is

required in the present case for the drag prediction, contrary to what is done

in [102], and no oscillations are observed, except for the very first time steps

after the impulsive acceleration. Considering the issues encountered in Chap-

ter 2, for the development of a hybrid Eulerian-Lagrangian solver, this is quite

an interesting feature.

Comparing the immersed interface solver with other existing VPM methods

shows that the sharp treatment of the wall stands in contrast with penalized

approaches [109, 50], where the near-wall flow is smeared due to the force molli-

fication. From another point of view, the present approach also provides a more

consistent alternative to panel-based VPM methods [83], as all different differ-

ential operations near the wall are performed on the grid using similar stencils.

Indeed, the operations contributing to the inconsistency of the panel-based

VPM solver have all been replaced by their immersed interface counterpart:

• No-through flow Poisson solver (Chapter 4).

• Near-wall diffusion and no-slip enforcement (Chapter 5).

• Particle-mesh interpolation near the wall (Chapter 6).

The application of the tools that are presented here (or a subset of them)

could therefore maybe contribute to the successful development of a fully oper-

ational hybrid Eulerian-Lagrangian solver, which remains a prerequisite for the

simulation of high Reynolds number wall-bounded flows using vortex methods.

Yet, this assertion has not been verified and some issues remain. The present

method appears to be less robust for under resolved cases, which is a typical

feature of purely grid-based methods. As a matter of fact, the bulk vortex

sheet can become very noisy in the starting phase. When the grid resolution

is not sufficient (or when the time step is too small), the near-wall diffusion is

not able to provide enough correction to the solution and the latter blows up.

Considering the hybrid solver, this is quite problematic, since the aim is to

couple the near-wall solver with an under resolved VPM method. A possible

remedy for this, among others, could consist in favoring the conservation of the

circulation during the different computational steps. However, this probably

would come at the cost of slightly reducing the near-wall accuracy.

It would also be interesting to consider the effect of reducing the redistri-

bution frequency. It is a priori not clear if this would improve or worsen the

robustness with respect to under resolved flow configurations.

186 Chapter 7. Immersed interface VPM

Furthermore, the computational time of the present approach is quite high

and there is much space for improvement, especially for the Poisson solver.

Fig. 7.21 shows a brief summary of the wall-clock time spent by the solver inside

the different operations of the VPM approach. One observes that the Poisson

solution clearly requires the highest computational time (“Advection”). This is

all the more important that the call to the linear solver (“Advection: Hypre”)

actually uses 32 cores here, whereas all the other operations are performed

sequentially. The “Biot-Savart (ext-ext)” item corresponds to the convolution

of the vortex sheet γcomp in order to compute the outer boundary condition

and “Biot-Savart (int-ext)” represents the convolution of the inner sheet γ

(see Chapter 4). The former takes more time because a direct summation is

performed here, whereas the latter uses fast summation techniques. One also

observes that the near-wall diffusion operation is also quite time consuming, as

the number of sub-iterations is here Nsub = 20.

4%

16%

48%

< 1%

11%

< 1%

13%

4%1%1%

IO

Advection : Hypre

Advection : Biot-Savart (ext-ext)

Advection : Biot-Savart (int-ext)

Advection : miscellaneous

Diffusion

Near-wall diffusion

P2M

M2P

Miscellaneous

Figure 7.21: Wall-clock time percentage for the different operations performed by
the present immersed interface VPM method (for the test case from Section 7.2.3);
all operations are sequential, apart from the linear solver inside the Poisson solver
(Hypre) that uses 32 cores.

Chapter 8

Numerical dispersion and

dissipation errors of a 1-D

redistributed Lagrangian

method

As explained in Chapter 6, redistribution is required in vortex methods in order

to remedy the flow induced distortion of the particles’ positions. Redistribut-

ing (or equivalently remeshing) the particles consists in periodically replacing

the set of distorted particles by a new set whose positions correspond to the

underlying grid nodes. While it helps keeping a good representation of the

vorticity field, this operation introduces some additional numerical errors to

the solution.

In [39], an equivalence between remeshed particle methods and finite dif-

ference methods is highlighted in the framework of transport equations and

similarities with the Lax-Wendroff scheme are observed, when remeshing oc-

curs at every time step. This gives a hint about the nature of the numerical

errors that are introduced. The link between remeshed particle methods and

finite differences is furthermore exploited in [36] so as to devise TVD redistri-

bution schemes for linear and non-linear transport equations, and the approach

is extended to develop non-oscillatory schemes for large time steps [84], with

the aim to reduce the produced numerical errors.

188 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

The present work mainly considers the performance of some classical re-

distribution schemes, in particular of the M ′
4 scheme derived by [93]. It has

already been shown in [132] that the redistribution acts as a hyper-viscosity

operator. In the present one-dimensional study, we show that, next to the

numerical dissipation error, a dispersion error is also introduced. Both types

of errors are quantified in the framework of a linear advection equation and

the study is performed in Fourier space, similarly to what was originally done

in [112] and [93], where the derivation of high order interpolation schemes was

precisely based on the properties of their transforms, or also to [18], where

isotropic and compact schemes were developed for alternative lattices.

8.1 Derivation of the numerical dissipation

and dispersion errors

Consider the following one-dimensional linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0 , (8.1)

with c a uniform advection velocity. The solution of this equation, in infinite

or periodic domain, is

u(x, t) = U0(x− ct) ∆= u(x− ct, 0) , (8.2)

where U0(x) ∆= u(x, 0) is the initial condition. For the remainder of this study,

let us furthermore consider a periodic domain x ∈ Ω ∆= [0, L], i.e. U0(x−kL) =

U0(x) for any integer k and therefore u(x− kL, t) = u(x, t).

Using N particles of position xp(t) (p = 0, ..., N − 1) in Ω and carrying the

function value up(t)
∆= u(xp(t), t), we can write the Lagrangian discretization

of this equation as

dxp

dt
= c , xp(0) = ph (8.3)

dup

dt
= 0 , up(0) = u(ph, 0) ,

with h = L/N the uniform mesh spacing. For the simple hyperbolic equation

Eq. (8.1), this discretization is actually equivalent to the classical method of

characteristics where the solution is integrated along the characteristics (which

are straight lines in the present case).

8.1. Derivation of the numerical dissipation and dispersion errors 189

The exact solution of the set of ordinary differential equations Eqs. (8.3)

can be computed as

xn+1
p = xn

p + c∆t

un+1
p = un

p ,

where xn
p

∆= xp(t
n), un

p
∆= up(t

n), ∆t is the time step and n the time step index

(tn+1 ∆= tn + ∆t). The above time integration amounts to perform an explicit

Euler integration (any other time integration is equivalent here and provides

the exact solution, by definition). Eq. (8.3) is intrinsically stable, as its right-

hand side is independent of the solution. The time step is therefore arbitrary

and we get the exact solution at any time t, up to round off error.

While being trivial, Eq. (8.1) allows to shed some light on the fundamental

spectral behavior of the redistribution operation, and these properties can be

translated to more complex two- and three-dimensional problems, where the

advection is far from being linear and the velocity far from being uniform,

unlike the present case.

Formally, the redistribution consists in replacing, after a few time steps,

say every (nr)th time step, the distorted set of particles xn
q carrying the value

un
q (and that have moved according to the local velocity field) by a new set of

particles whose positions xn,r
p

∆= ph coincide with the underlying grid nodes.

Without loss of generality, we set nr = 1 and the redistribution period ∆tr ∆=

nr∆t is simply ∆t, since the time integration is anyway exact here. A measure

of the redistribution frequency is given by the following CFL-like number

β ∆=
c ∆t

h
,

that can be interpreted as the number of cells the solution has traveled before

being redistributed. The sequence of operations we wish to study therefore

consists in first advecting the particles from xn
q = qh to xn+1

q = (β + q)h (no

numerical error is introduced during this step) and, secondly, in redistributing

the freshly moved particles onto the grid as xn+1,r
p = ph. Following Eq. (6.1),

the function value carried by the new particle at xn+1,r
p is computed as

un+1,r
p =

N−1∑

q=0

un+1
q vper

(
xn+1,r

p − xn+1
q

)
, (8.4)

with vper(x) ∆=
∑+∞

m=−∞ v(x −mL) the periodized redistribution kernel based

on the interpolation scheme v(x) ∆= w(x/h).

190 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

Consider for example the classical third order scheme w(ξ) = M ′
4(ξ) derived

by Monaghan [93] (see Chapter 6 and Appendix C for more details about the

redistribution and the associated kernels).

At this point, let us introduce some new notation that is better suited for the

following study performed in Fourier space. For the remainder of this Chapter,

a discrete function will be noted as f [·] (with an integer as the argument)

and f(·) stands for a continuous function (with a real value as the argument).

Moreover, let us here consider one time step, going from n = 0 to n = 1 (in

Section 8.2.2 we will also consider several successive steps). Hence, the values

u0[p] ∆= u0
p and u1,r[p] ∆= u1,r

p are formally discrete functions of the particle

index p on the grid xp
∆= ph. Notice that u1

p resides on a grid that is shifted

with respect to the original grid xp and we do not introduce the new notation

here in order to avoid any ambiguity concerning the underlying grid definition.

As a consequence, Eq. (8.4) is equivalently described by a discrete convolution

on the grid xp

u1,r[p] =

N−1∑

q=0

u0[q] vβ
per[p− q] , (8.5)

with vβ
per[p] ∆= vper ((p− β)h) the discretized and periodized redistribution

scheme that is furthermore shifted in space by an amount βh.

The DTFS (Discrete-Time Fourier Series for discrete and periodic func-

tions) of this convolution is

Ũ1,r[l] = NṼ β
per[l] Ũ0[l] = ρ̃r[l] Ũ0[l] l = 0, ..., N − 1 ,

with ρ̃r[l] ∆= NṼ β
per[l] the amplification factor due to the redistribution and

F̃ [l] ∆= DTFS{f [p]} the corresponding Fourier transform defined in Appendix C.

In order to obtain Ṽ β
per[l] as a function of V̂ (k) ∆= FT{v(x)} (Fourier Transform

for non periodic continuous functions with k = 2π/λ the wavenumber and λ

the wavelength; see Appendix C), we have to perform the following sequence

of operations in Fourier space (see also Fig. 8.1):

v(x)

V̂ (k)

k ∈ R

FT

vβ(x)

V̂ β(k)

k ∈ R

FT

vβ
s [p]

Ṽ β
s (K)

0 ≤ K < 2π

DTFT

vβ
per[p]

Ṽ β
per[l]

l = 0, ..., N − 1

DTFS

1. shift 2. sampling 3. periodization

8.1. Derivation of the numerical dissipation and dispersion errors 191

with vβ(x) ∆= v(x − βh), vβ
s [p] ∆= v((p − β)h) and DTFT the Discrete-Time

Fourier Transform for non periodic discrete functions (see Appendix C).

βh

v(x) vβ(x) vβ
s [p]

vβ
per[p]

.

−L 0 +L

−1 0 1 2 N−N

h

Figure 8.1: Sketch of the sequence of operations (here in the physical space) required
in order to obtain the discrete function vβ

per[p].

The details of these operations are

1. Shift : The first operation consists in a shift βh of the redistribution

kernel v(x). The operation in Fourier space is

V̂ β(k) = exp(−jkβh) V̂ (k) k ∈ R .

2. Sampling : Sampling vβ(x) at rate h yields the following distribution

vβ
s (x) ∆=

+∞∑

m=−∞
vβ(mh) δ(x −mh) .

Its FT is the periodization of the spectrum V̂ β(k) (with a “spectral pe-

riod” 2π/h)

V̂ β
s (k) =

1

h

+∞∑

m=−∞
V̂ β

(
k − 2πm

h

)
k ∈ R .

Making the link between the FT V̂ β
s (k) of the sampled function and the

DTFT Ṽ β
s (K) of the associated discrete function vβ

s [p] and using the

sampling relation k = K/h, we obtain

Ṽ β
s (K) = V̂ β

s

(
K

h

)
=

1

h

+∞∑

m=−∞
V̂ β

(
K − 2πm

h

)
.

One can see here that aliasing will occur because the redistribution kernels

we are working with have an infinitely broad spectrum V̂ (k).

192 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

3. Periodization : The periodization (with a discrete period N) of the

shifted and discrete redistribution scheme can also be rewritten as vβ
per[p] =

∑+∞
m=−∞ vβ

s [p−mN]. As a consequence, the spectrum Ṽ β
s (K) is sampled

at a rate ∆K = 2π/N or equivalently K = l∆K = 2πl/N . The link

between the periodized DTFT Ṽ β
s (K) and the associated DTFS Ṽ β

per[l]

finally yields

Ṽ β
per[l] =

1

N
Ṽ β

s

(
2πl

N

)
=

1

N
V̂ β

s

(
2πl

L

)

=
1

L

+∞∑

m=−∞
V̂ β

(
2π

h

(
l

N
−m

))
.

The amplification factor is then

ρ̃r[l] = exp

(
− j2πlβ

N

) +∞∑

m=−∞
exp (j2πβm) Ŵ

(
2π

(
l

N
−m

))
, (8.6)

because V̂ (k) = hŴ (kh), where Ŵ (k) is the Fourier transform of w(ξ).

In order to quantify the error made by the redistribution procedure, let

us consider the exact amplification factor. Using the DTFS coefficients Ũl(t)

defined by Ũl(t
n) ∆= Ũn[l] for discrete time steps, the exact grid solution of

Eq. (8.1) for a given set of initial modes Ũl(0) may be rewritten as a Fourier

Series (FS; see Appendix C)

u(x, t) =

N/2∑

l=−N/2+1

Ũl(t) exp(jklx)

=

N/2∑

l=−N/2+1

Ũl(0) exp(jkl(x− ct)) ,

using the solution Eq. (8.2) and as the physical wavenumber is related to the

mode l by kl = 2πl/L, according to the above relations established between

the different transforms. The exact amplification factor associated to the grid,

and going from t = 0 to t = ∆t, is therefore

ρ̃[l] = exp(−jklc∆t) = exp(−jklβh) = exp

(
− j2πlβ

N

)
,

which is also, not surprisingly, equivalent to a shift β applied to a discrete

8.1. Derivation of the numerical dissipation and dispersion errors 193

function. Moreover, one may recognize the definition of ρ̃[l] in the term mul-

tiplying the infinite sum of Eq. (8.6). Hence, the spectrum Ŵ ⋆(k) of an ideal

redistribution scheme should satisfy, for all modes l:

γ̃⋆[l] ∆=

+∞∑

m=−∞
exp (j2πβm) Ŵ ⋆

(
2π

(
l

N
−m

))
= 1 . (8.7)

For a given redistribution scheme, any deviation from this equality results in

numerical dissipation and/or dispersion errors. Following the classical analysis

of those errors, the modulus of the amplification factor |ρ̃r[l]| quantifies the

numerical dissipation error associated to the mode l, whereas the phase φr[l] ∆=

arg(ρ̃r[l]) is related to the dispersion error.

Alternatively, one may also obtain ρ̃r[l] by performing directly the convolu-

tion of Eq. (8.5) (i.e. by redistributing u1[q] on the grid in order to get u1,r[q])

and then computing Ũ1,r[l] as DTFS{u1,r[q]}. Considering the impulse re-

sponse to u0
δ[q] = δ[q] (a single unitary particle at q = 0), we have Ũ0

δ [l] = 1/N

and hence ρ̃r[l] = Ũ1,r
δ [l]/Ũ0

δ [l] = N Ũ1,r
δ [l]. This approach is strictly equivalent

to the previous derivation but the former allows a more thorough analysis of

the induced numerical errors, as it suggests writing the condition Eq. (8.7) that

an ideal redistribution scheme must satisfy. Yet, the latter is still applicable

when Ŵ (k) is not known.

As a side note, since vβ
per[p] is real, ρ̃r[l] is Hermitian symmetric in addition

to being periodic and we therefore only consider the modes l = 0, ..., N/2 (by

furthermore assuming that N is even). As expected, the smallest wavenumber

is k0 = 0 and the highest wavenumber on the grid is given by kN/2 = π/h

(“flip-flop mode”).

The exact amplification factor has a unitary amplitude |ρ̃[l]| = 1 and its

phase is given by

φ[l] ∆= arg(ρ̃[l]) = −2πlβ/N = −klh β . (8.8)

Considering the principal branch defined by −π ≤ Arg(ρ̃[l]) < π, one may

observe that branching occurs for the phase at the highest wavenumbers when

|β| > 1. Hence, the computation of the amplification factor phase φr[l] has to

account for the number lβ/N of wavelengths λl
∆= L/l the mode l has traveled

194 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

before being redistributed, and we have

φr [l] = Arg(γ̃r[l])− 2πlβ/N = Arg(γ̃r[l])− klh β ,

with ρ̃r[l] ∆= ρ̃[l] γ̃r[l]. The maximum phase error is thus implicitly restricted to

π for all modes. This restriction is however sensible, even for the mode klh = π

where a phase shift of π corresponds to one cell.

The associated dispersion error may be recast in its classical form as a

modified wavenumber k∗ by writing the redistributed solution as

ur(x, ∆t) =

N/2∑

l=−N/2+1

Ũ1,r[l] exp(jklx)

=

N/2∑

l=−N/2+1

Ũ0[l] |ρ̃r[l]| exp(jφr[l]) exp(jklx)

∆=

N/2∑

l=−N/2+1

Ũ0[l] |ρ̃r[l]| exp(j(klx− k∗
l c∆t)) ,

and we thus obtain the following expression for the dispersion error

k∗
l h = −φr[l]

β
. (8.9)

Similarly, an effective diffusion coefficient ǫ∗ can be defined by the following

relations

|ρ̃r[l]| ∆= exp(−ǫ∗l k
2
l ∆t)

ǫ∗l
ch

= − log |ρ̃r[l]|
β(klh)2

. (8.10)

Hence, every redistributed mode ur
l (x, ∆t) ∆= Ũ1,r[l] exp(jklx) can be seen as

the solution of the following modified equation for a given β

∂u

∂t
+ c

(
k∗

l h

klh

)
∂u

∂x
= ǫ∗l

∂2u

∂x2
,

which actually corresponds to a convection-diffusion equation.

For the remainder of this Chapter, the notation for the mode l will be

dropped, unless stated otherwise and, any reference to the wavenumber k im-

plicitly means kl.

8.2. Results 195

8.2 Results

The numerical dissipation error for the M ′
4 redistribution kernel is shown in

Fig. 8.2, Fig. 8.3 and Fig. 8.4 for various values of β (the infinite sum in

Eq. (8.6) is truncated to m = −100, ..., 100). Not surprisingly, i + β induces

the same error on |ρ̃| as β for all i ∈ Z, as the kernel is simply shifted by i

cells with respect to its initial location β. Hence, the redistributed particle

field preserves its “shape”. Due to the kernel symmetry, i− β also leads to the

same error on |ρ̃| as β. As can be seen in Fig. 8.2, no dissipation error is made

when β is an integer, whereas the scheme is most dissipative when β = i + 0.5.

The “flip-flop” mode, kh = π, completely vanishes for this value of β and the

effective diffusion coefficient ǫ∗ is thus infinite (see Fig 8.3). This is consistent

with the observation that this mode can only appear in the form of a cosine,

since ℑ{F̃ [N/2]} = 0 for any real function f [p] (ℑ{F̃ [l]} is odd and periodic of

period N). The value β = i + 0.5 thus transforms the cosine into a sine with

zero amplitude.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

...

...

...

...

...

0 3

2.9

2.8

2.7

2.6
2.5

2.4

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6
1.5

1.4

1.3

1.2

1.1

1
0.9

0.8

0.7

0.6
0.5

0.4

0.3

0.2

0.1
...

kh

π

|ρ̃r|

Figure 8.2: Numerical dissipation error |ρ̃| for the redistribution scheme M ′

4 for
different values of β ≥ 0 (the curves are labeled with the associated value of β).

196 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

0 0.25 0.5 0.75 1
0

0.25

0.5

0.1

0.2

0.3

0.4

0.
5

0.6

0.7

0.8
0.9

0 1

kh

π

ǫ∗

ch

Figure 8.3: Numerical dissipation error ǫ∗ for the redistribution scheme M ′

4 for
different values of β with 0 ≤ β ≤ 1 (the curves are labeled with the associated value
of β).

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15
0.2

1.2

2.2

0.8

1.8

2.8

0 1 2 ...

kh

π

ǫ∗

ch

Figure 8.4: Numerical dissipation error ǫ∗ for the redistribution scheme M ′

4 when
β = 0.2 + i and β = 0.8 + i with i an integer (thin solid lines); The curves are labeled
with the associated value of β.

The dispersion error is best understood when considering the associated

phase error, as shown in Fig. 8.5 for 0 ≤ β ≤ 1. The exact phase (dotted lines)

is linear in kl and also in β, according to Eq. (8.8). Another consequence of

the previous observation about the “flip-flop” mode kh = π is that it cannot

8.2. Results 197

move arbitrarily with respect to the grid and its phase is therefore necessarily

a multiple of π, as can be seen in Fig. 8.5. For β 6= 0.5, the phase is continuous

as a function of the wavenumber k, and this leads to an all the more important

phase error when kh → π, as classically observed for any grid based method.

One should observe that no dispersion error is made when β is a multiple of 0.5.

The apparently inconsistent fact that no dispersion error is made for kh = π

when β = 0.5, is explained by the zero amplitude of the mode, according to

the previously discussed dissipation error.

0 0.25 0.5 0.75 1

0

0.5

1

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.

9 0.5

kh

π

−φr

π

Figure 8.5: Phase of the amplification factor ρ̃r for the redistribution scheme M ′

4

when 0 ≤ β ≤ 1 (solid lines); phase of the exact amplification factor ρ̃ (dotted lines).
The curves are labeled with the associated value of β.

Based on these observations, we have the following expressions for the limits

around β = 0.5

lim
β→0.5−

φr(k) =





φr

0.5(k) if kh 6= π

0 if kh = π

lim
β→0.5+

φr(k) =





φr
0.5(k) if kh 6= π

−π if kh = π
,

where φr
0.5 is the phase associated to β = 0.5.

198 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

The modified wavenumber k∗ is shown in Fig. 8.6. Interestingly, all modes

k > 0 move faster than the exact solution for 0.5 < β < 1, whereas they are all

slower for 0 < β < 0.5. We can also compute the limits around β = 0.5 for the

modified wave numbers as follows

lim
β→0.5−

k∗h =





k∗
0.5h if kh 6= π

0 if kh = π

lim
β→0.5+

k∗h =





k∗
0.5h if kh 6= π

2π if kh = π
,

as limβ→0.5+(k∗h) = − limβ→0.5+(φr/β) = −2 limβ→0.5+ φr (k∗
0.5h is the mod-

ified wave number associated to β = 0.5).

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

0.1
0.2

0.3

0.4

0.
5

0.
6

0.
7

0.
8

0.
9

0

0.
5+

0.
5−

kh

π

k∗h
π

(a)

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

0.1
0.2

0.3
0.4

0.5

0.
6

0.
7

0.8

0.9
0.

5+
0.

5−0

kh

π

k∗h
kh

(b)

Figure 8.6: Numerical dispersion error for the redistribution scheme M ′

4 expressed
as a modified wavenumber k∗ when 0 ≤ β ≤ 1 (thin solid lines for β > 0 and dotted
lines for the limits β → 0, β → 0.5− and β → 0.5+); exact wavenumber k (thick solid
line). The curves are labeled with the associated value of β.

8.2. Results 199

The numerical dissipation and dispersion properties of a redistributed La-

grangian method become more interesting when β > 1, as expected, since the

redistribution frequency is then lowered accordingly (the particles travel fur-

ther before being redistributed). However, this statement implicitly considers

a relative measure of the underlying numerical errors. The effective diffusion

coefficient ǫ∗ and the modified wave number k∗ fulfill this requirement, as they

are both normalized by β (see Eq. (8.10) and Eq. (8.9)). As shown in Fig. 8.4

and Fig. 8.7, for an increasing integer i, the value i + β leads to a decreasing

dissipation error ǫ∗, as well as to a decreasing dispersion error k∗.

On the contrary, the amplitude |ρ̃r| gives an absolute measure of the dissi-

pation error and the phase φr represents an absolute measure of the dispersion

error. Hence, a shift of i + β induces the same error (φr − φ) as does a shift

of β (the error never exceeds π/2, see Fig. 8.8), similarly to what was already

observed for the dissipation error on |ρ̃r| (see Fig. 8.2). Moreover, due to the

symmetry of the redistribution kernel, (φr − φ) is odd with respect to β. In

short, |ρ̃r| and (φr−φ) are both periodic functions of β (with period 1) enjoying

some symmetry properties (recall that |ρ̃r| is even with respect to β).

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

1.2

2.2

0.
8

1.
8

2.
8

1
2

3
...

kh

π

k∗h
π

(a)

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

1.2

2.2

0.8

1.8
2.8

1 2 3 ...

kh

π

k∗h
kh

(b)

Figure 8.7: Numerical dispersion error for the redistribution scheme M ′

4 expressed
as a modified wavenumber k∗ when β = 0.2+ i and β = 0.8+ i with i an integer (thin
solid lines); exact wavenumber k (thick solid line). The curves are labeled with the
associated value of β.

200 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

β = 0

β = 1

β = 2

β = 3

kh

π

−φr

π

Figure 8.8: Phase of the amplification factor ρ̃r for the redistribution scheme M ′
4

when 0 ≤ β ≤ 3 (solid lines); phase of the exact amplification factor ρ̃ (dotted lines).
The values of β to the right of the figure are given for kh = π.

8.2.1 Averaged numerical errors

In a more general framework, where the advection velocity is not uniform,

the average dispersion and dissipation errors may be computed by assuming a

certain distribution σ(β) in the flow. We define the following weighted averages

φr − φ ∆=
1

β̄

∫ βmax

0

σ (φr − φ) dβ′

|ρ̃r| ∆=
1

β̄

∫ βmax

0

σ |ρ̃|r dβ′

with β̄ ∆=
∫ βmax

0
σ dβ′.Strictly speaking, σ(β) actually corresponds to a velocity

distribution in time. Yet, we make the assumption here that the expressions

developed throughout this section provide a good estimation of the average

numerical errors observed for a given velocity distribution in space.

As a first approximation, we consider here a uniform distribution σ(β) = 1

in the interval β ∈ [0, 1], as both functions are periodic with respect to β.

Due to the oddness, φr − φ = 0, which means that the dispersion error is zero

8.2. Results 201

on average. In order to distinguish several redistribution schemes, we rather

consider the following average, based on the modified wavenumber

k∗ ∆=
1

β̄

∫ βmax

0

σk∗ dβ′ ,

using again βmax = 11.

Different redistribution schemes are compared in Fig. 8.9 and Fig. 8.10.

The definitions of the redistribution schemes are given in Appendix C. Only

continuous interpolating (w(p) = δ[p] with p ∈ Z)) schemes are considered here

(i.e. M2, Λ3, M ′
4 and M∗∗

6). Non-interpolating schemes (w(0) 6= 1, e.g. M3

and M4) lead to higher dissipation errors, in particular for an integer shift β,

where interpolating schemes do not induce any error. All discontinuous schemes

(e.g. Λ2) are intrinsically asymmetric (for conservation reasons) and they lead

to higher dispersion errors. The modified wavenumbers obtained when using

centered finite differences are also shown in Fig. 8.10, when considering the

dispersion properties (they have no dissipation error).

The M2 kernel is the most dissipative scheme, whereas M∗∗
6 is the less dis-

sipative one. In terms of dispersion, M ′
4 and M2 appear to be identical; they

are a little worse than Λ3 and M∗∗
6 . Yet, all four schemes are very similar as

to their dispersion errors. The comparison with the finite differences is partic-

ularly appealing. The average should be considered with some care, though.

Indeed, as previously observed, the underlying function k∗ is discontinuous with

respect to β when kh = π which induces high dispersion errors, and the average

behavior is thus too optimistic in that case (equivalently stated, the standard

deviation of k∗ is high). The best scheme is M∗∗
6 , but its interpolation range

affects 6 points, as opposed to M ′
4 which affects 4 grid points. The latter still

provides satisfactory dissipation and dispersion properties at a sensibly smaller

computational cost.

1 One may argue that the averaging interval should be taken larger here, since βmax >> 1
in practice for a Lagrangian method (βmax = nrCFLmax, where CFLmax and nr may both
be larger than 1). However, the choice βmax = 1 allows a better comparison between the
different schemes, while it is clear that the average dispersion error k∗ tends to 0 when
βmax →∞, following previous observations.

202 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

kh

π

|ρ̃r|

Figure 8.9: Average numerical dissipation error |ρ̃| for different redistribution
schemes (βmax = 1): M2 (dotted line), Λ3 (dashed line), M ′

4 (thin solid line) and
M∗∗

6 (dash-dotted line).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

E2

E
4

E
6

I4
I6

kh

π

k∗h
π

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

E
2

E
4

E
6

I4
I6

kh

π

k∗h
kh

(b)

Figure 8.10: Average numerical dispersion error k∗ for different redistribution
schemes (βmax = 1): M2 (dotted line), Λ3 (dashed line), M ′

4 (thin solid line) and
M∗∗

6 (dash-dotted line); exact wavenumber k (thick solid line); dispersion errors for
centered finite differences (blue lines; “Ep” and “Ip” stand respectively for a pth order
explicit and implicit scheme).

8.2. Results 203

8.2.2 Recursive application of the redistribution

Instead of applying the redistribution scheme only once after the particles have

traveled β cells, we also consider the case where the scheme is applied n times

after each travel of β/n cells. This amounts to study the effect of increasing the

redistribution frequency, for a given total displacement of β cells. In Fourier

space, the recursively applied convolution becomes

Ũn,r[l] =
(
ρ̃r

β/n[l]
)n

Ũ0[l] ,

where the new notation ρ̃r
β/n is adopted in order to point out that the ampli-

fication factor is now computed with a shift β/n in Eq. (8.6). After the nth

redistribution, an ideal scheme would perfectly recover the displacement of β

cells (and without dissipation), for all modes. This is not the case here and,

moreover, we have that (ρ̃r
β/n)n 6= ρ̃r

β , in general. The phase is now computed

as

φr
n·β/n

∆= arg
(
(ρ̃r

β/n)n
)

= n Arg(γ̃r
β/n)− kh β ,

with ρ̃r
β/n

∆= ρ̃β/n γ̃r
β/n and ρ̃β/n the exact amplification factor for a shift of

β/n cells.

The errors resulting from a recursive application of the scheme are shown

in Fig. 8.11 when β = 1, and in Fig. 8.12 when β = 3.7. The associated phase

error is not shown here, as the information is redundant with k∗h in this case

(it only differs from it by the factor −β). Considering the case β = 1, one may

observe that no dissipation and no dispersion occur for n = 1, by definition,

whereas n = 2 leads to a maximal dissipation error. This is in agreement

with previous results, as the redistribution is applied twice with a shift of 0.5

cells. For n > 2, the recursive redistribution appears to converge to a non-

dissipative, yet dispersive scheme. This is due to the fact that the intermediate

shifts β/n tend to 0 when n → ∞. Formally, we can write the following limit

for the effective diffusion coefficient ǫ∗n·β/n, associated to n applications of the

redistribution scheme with a shift β/n:

204 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

lim
n→∞

(
ǫ∗n·β/n

ch

)
∆= lim

n→∞

(
log |ρ̃r

β/n|n

β(kh)2

)

= lim
n→∞

(
log |ρ̃r

β/n|
β
n (kh)2

)

= lim
β→0

(
ǫ∗1·β
ch

)
,

where ǫ∗1·β corresponds to a unique application of the scheme with a shift β.

Referring to Fig. 8.3, we may state that limβ→0 (ǫ∗1·β) = 0 and as a consequence,

we have that

lim
n→∞

|ρ̃r
β/n|n = 1 ,

which is in agreement with Fig. 8.11 (a).

Similarly, the modified wavenumber k∗
n·β/n, associated to n applications of

the redistribution scheme with a shift β/n, also has a finite limit

lim
n→∞

(k∗
n·β/n h) ∆= lim

n→∞

(
kh− n

β
Arg(γ̃r

β/n)

)

= lim
β→0

(k∗
1·β h) ,

which is the modified wavenumber obtained when applying the redistribution

only once for β → 0. It may be computed using L’Hospital’s rule as

lim
β→0

(k∗
1·β h) = − lim

β→0

∂φr

∂β

=

∑+∞
m=−∞ (kh− 2πm) Ŵ (kh− 2πm)

∑+∞
m=−∞ Ŵ (kh− 2πm)

=

+∞∑

m=−∞
(kh− 2πm) Ŵ (kh− 2πm) ,

if the kernel w(ξ) is interpolating, as then
∑+∞

m=−∞ Ŵ (kh− 2πm) = 1. Indeed,

this corresponds to a periodization of the spectrum Ŵ (kh) and hence to a

sampling of w(ξ). Sampling w(ξ) yields a Dirac function whose transform is

equal to 1. As a side note, this limit seems to be

lim
β→0

(k∗
1·β h) = sin(kh) ,

for the M ′
4 scheme, as can be seen in Fig. 8.6, Fig. 8.11 and Fig. 8.12. This

corresponds to the modified wavenumber of a second order centered finite dif-

8.2. Results 205

ference scheme, as shown in Fig. 8.10. The limit of the amplification factor

phase is then

lim
n→∞

φr
n·β/n = −β lim

β→0
(k∗

1·β h) .

Remarkably, and contrary to the dissipation error, where limn→∞ |ρ̃r
β/n|n =

limβ→0 |ρ̃r
β |, one observes that

lim
n→∞

φr
n·β/n 6= lim

β→0
φr

1·β = 0 ,

the latter equality resulting from Fig. 8.5.

The asymptotic limits that were derived for the dissipation and the disper-

sion errors do not assume any particular value of β. Moreover, the limits for ǫ∗

and k∗ no longer depend on β. Indeed, this is what can be observed for both

cases β = 1 and β = 3.7 (the choice of the latter value is such that it is larger

than 1 and “arbitrary”). Nevertheless, the convergence is clearly non mono-

tonic when β/n ≥ 0.5, as shown for example in Fig. 8.12 when n ≤ 2β = 7.4.

This results from the fact that the behavior of |ρ̃r| and k∗ is non-monotonic

with respect to β when n = 1 and β ≥ 0.5 (see Fig. 8.2 and Fig. 8.6).

206 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 1

2

3

4

5

6

7

8
9
10

20

50

100
200

β = 1

kh

π

|ρ̃β/n|n

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1

12

3

4
5

200

β = 1

kh

π

k∗h
π

(b)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 1 12

3
4

5
200

β = 1

kh

π

k∗h
kh

(c)

Figure 8.11: Numerical dissipation error |ρ̃| (a) and dispersion error k∗ (b and c)
obtained for M ′

4; the scheme is successively applied n times with a shift β/n each time,
for a total displacement of β = 1 (the curves are labeled with the associated value of
n).

8.2. Results 207

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1

2

3

4

5

20

50

100

200

500

1000
2000

10

β = 3.7

kh

π

|ρ̃β/n|n

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

5

1
2

3

4
6

7

8

9
10

20

2000

β = 3.7

kh

π

k∗h
π

(b)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

5

12

3

4

6
7

8

9

10
20

2000

β = 3.7

kh

π

k∗h
kh

(c)

Figure 8.12: Numerical dissipation error |ρ̃| (a) and dispersion error k∗ (b and c)
obtained for M ′

4; the scheme is successively applied n times with a shift β/n each
time, for a total displacement of β = 3.7 (the curves are labeled with the associated
value of n).

208 Chapter 8. Disp. and diss. errors due to redistribution in 1-D

8.2.3 Conclusion

Lagrangian methods have negligible numerical dispersion and dissipation er-

rors, by definition. However, in practice, periodic redistribution of the parti-

cles is required in order to maintain an accurate representation of the described

field (i.e., the vorticity), and the Lagrangian method hence implicitly adopts a

Eulerian character, while revealing some typically grid-related properties, such

as numerical dispersion and dissipation errors.

Those errors are closely related to the redistribution frequency, when consid-

ering the modified wave number and the effective numerical diffusion coefficient.

As expected, the lower the redistribution frequency, the lower the numerical

errors. As a consequence, the optimal redistribution frequency results from a

balance between the latter numerical errors and the error induced by flow dis-

tortion when the frequency is low (i.e. when the redistribution is applied “too

rarely”). Studying the effect of the particle distortion would require consider-

ing a non-uniform advection velocity (and perhaps a 2-D framework), contrary

to the present analysis that was carried out for a uniform velocity.

Nevertheless, one of the advantages of Lagrangian methods is the absence of

formal CFL-type condition, which allows using larger time steps. Hence, even

if the redistribution occurs every time step, the average number of cells traveled

by a particle before being redistributed is generally significantly higher than

for a conventional grid-based method, in practice, and the associated numerical

errors remain consequently lower. Comparisons of a remeshed vortex particle-

mesh method with a pseudo-spectral method indeed show a very good agree-

ment in terms of energy spectra and dissipation when simulating medium [37]

and high Reynolds number flows [127], for both resolved and under resolved

grid configurations.

Chapter 9

Conclusions

This thesis makes a contribution to wall-bounded VPM methods by proposing

a novel approach for the integration of solid boundaries, based on an immersed

interface technique initially introduced in [77]. Thanks to their high level of

maturity, vortex methods already excel and outperform other CFD techniques

for the simulation of unbounded vortical flows (study of the wake interactions

in wind farms or the characterization of aircraft wakes in various atmospheric

conditions). Yet, considering wall-bounded flows, some challenges still need to

be addressed and further developments are required in order to make them

competitive for a broader range of applications. While several well-performing

techniques have been proposed in the literature, there is room for improvement,

as to their application within vortex particle-mesh (VPM) methods. The main

topic of this work has been to highlight some of the weaknesses of currently

available VPM methods concerning the treatment of solid walls and to provide

appropriate solutions so as to improve them.

9.1 Achievements

The motivation for the development of an immersed interface VPM method

arose from investigations about the behavior of a 3-D hybrid Eulerian-

Lagrangian solver.

Indeed, the starting point of this thesis was the development of such a

hybrid method and it was driven by the consideration that the combination of

a VPM method with a near-wall Eulerian solver is the most natural evolution

for vortex methods aiming at the simulation of high Reynolds number wall-

210 Chapter 9. Conclusions

bounded flows. The present hybrid approach, based on an overlapping domain

technique, has been inspired from Daeninck [40] and combines a finite volume

solver from the OpenFOAM software library with the VPM method that was

developed in Lonfils [83].

The core developments of this thesis were initiated from the observation of

spurious high-frequency oscillations in the drag evolution during the validation

of the methodology on the flow past a sphere. Some indications seemed to

show that this spurious phenomenon might be related to the treatment of

the no-slip condition by the VPM approach, yet the causality has not been

definitely established here. A consistency problem inside the VPM solver has

been highlighted, occurring between the vortex panel method approach and

the grid-based Poisson solver.

From this point of view, adopting an immersed interface approach is the

appropriate response to the above consistency problem, as it allows perform-

ing all spatial differential operations on the grid, thus conforming to the basic

philosophy of vortex particle-mesh methods, by using similar finite difference

stencils for the wall treatment. Consequently, the various operations of the

VPM method have been revisited with the target of incorporating these tech-

niques at all computational levels, so as to maintain the accuracy up to the

wall.

Regarding the development of immersed interface techniques for VPM meth-

ods, the main achievements of this work are:

• The present numerical framework involves only purely one-dimensional

immersed interface corrections for the spatial derivatives, as they are

computed at the intersection of the interface with the grid lines (i.e. at

the control points). Moreover, there is no interdependence between the

control points. This allows performing the correcting procedure one grid

direction at a time, without considering the neighbors.

• A 2-D immersed interface Poisson solver has been developed with the

aim of providing a consistent tool for the computation of a velocity field

satisfying a no-through flow condition at the wall and a far-field condition

enforcing a free stream flow. The approach is based on the James-Lackner

algorithm for the enforcement of the far-field condition. Furthermore, in

the context of the flow computation past an airfoil, a new scheme for the

enforcement of the Kutta-Joukowsky has been introduced.

9.1. Achievements 211

• In the context of the diffusion term correction, a “compatible extrapola-

tion scheme” has been developed in order to account for Neumann bound-

ary conditions, without significantly affecting the stability compared to

the classical (uncorrected) scheme. The challenge here consists in recon-

ciling the one-dimensional nature of the corrections with the intrinsically

2-D flux condition.

• The interpolation procedure between the particles and the grid has been

adapted so as to account for the wall, while still relying on the classical

techniques used by vortex methods (using high order interpolation ker-

nels). The approach is based on the pre-computation of ghosts, which

are grid values for the M2P procedure (mesh to particles) and particle

values for the P2M interpolation (particles to mesh). The ghost particles

are obtained by a level set extension technique.

• Finally, the previous tools have been successfully combined into an im-

mersed interface-enabled vortex particle-mesh solver. The approach has

been validated on some challenging test cases, such as the impulsively

started flow past a cylinder or past an airfoil with a sharp trailing edge

and the vortex shedding induced by the flow past a cylinder.

The presently developed tool takes advantage from both simulation ap-

proaches, the Lagrangian and the Eulerian methodologies. The spatial differ-

ential operators are performed in a more consistent and accurate manner near

the wall, while keeping the advantage of working with particles for the advec-

tion. By doing so, the VPM method surely comes closer to grid-based methods

and perhaps loses a bit from its “mesh-less” nature. Yet, the method is able

to perform very well on test cases which are usually considered only achievable

by purely Lagrangian methods, i.e. the simulation of impulsively started flows.

In particular, the simulation results for the near-trailing edge flow dynamics

of an impulsively started airfoil (formation of the starting vortex) are quite

remarkable.

The eventual target for the simulation of wall-bounded flows still consists

in developing a hybrid Eulerian-Lagrangian VPM solver, which is commonly

accepted the most appropriate way to achieve the simulation of high Reynolds

number flows using the VPM approach. Improving the treatment of the wall

inside the VPM approach is one step towards that direction, considering hybrid

approaches based on overlapping domains. Moreover, in its stand-alone version

212 Chapter 9. Conclusions

(thus non-hybrid), the immersed interface VPM solver provides a more accurate

tool for the simulation of moderate Reynolds number flows.

In addition to these achievements, some complementary studies have been

performed, so as to provide more insight into two specific aspects of VPM meth-

ods, namely the temporal accuracy of the no-slip enforcing procedure and the

quantification of the numerical errors of dispersion and dissipation introduced

by the redistribution procedure. The conclusions of these investigations are as

follows:

• The academical test case consisting of a dipole flow inside a cavity has

been used as a “sand box” problem in order to study the no-slip en-

forcing procedure, with the aim of attempting to improve the associated

temporal accuracy compared to the classical approach. The very sim-

ple problem geometry has allowed bypassing the errors due to arbitrary

intersections between the wall and the grid, as introduced by immersed

interface methods. Improving the time accuracy of the no-slip enforcing

procedure is twofold. First, the effect of the splitting of the equations

has been studied and an inconsistency of the classical methodology has

been highlighted and remedied for the case where the vorticity flux is

prescribed. Secondly, the vorticity flux approximation intended to yield

the no-slip condition has been analyzed by studying the characteristics

of the associated vortex sheet. Yet, the global accuracy of the approach

could not be formally improved and some suggestions have been made

for future research.

• As a conclusion of this work, we have studied the numerical errors of

dispersion and dissipation that are introduced by the redistribution of

the particles, in the 1-D case. Results have shown that the approach is

less prone to those errors, when the redistribution frequency is reduced

(provided the flow has not distorted the set of particles too much, in the

2-D and 3-D case), as one could expect.

9.2 Perspectives

The present results have shown that the immersed interface approach, which

shares many aspects with grid-based methods, is able to compete with classical

vortex methods. It thus offers a more consistent framework for vortex methods

9.2. Perspectives 213

in the context of wall-bounded flows. Yet, the present method remains a proof

of concept and several improvements can be envisaged:

• The first and most obvious point consists in a generalization to 3-D flows.

The use of one-dimensional stencil corrections is intrinsically prone to be

generalized to multiple dimensions. Yet, accounting for the no-through

flow condition using the streamfunction is less straightforward in 3-D and

a velocity-based approach could be used. According to the suggestions

made in Chapter 4, a Neumann boundary condition must then be en-

forced on the wall. This could be achieved by using the “compatible

extrapolation scheme” from Chapter 5.

• At the present time, the computation of the Poisson solution is still quite

expensive in terms of computational time (see Section 7.4), despite the

limited number of iterations for the enforcement of the far-field condition.

Solving the linear system Ax = b with the wall corrections could be

performed by relying on the decomposition of the matrix A = A0 +

Aw into a contribution A0 corresponding to a classical Poisson solver

and another one Aw corresponding to the wall corrections. One may

then solve the problem either iteratively by relaxation [80], either by

using the Sherman-Morrison-Woodbury formula, as was done in [20] for

a penalization method. Both approaches allow using a fast Poisson solver

for the inversion of the matrix A0, which should significantly accelerate

the computation. Regarding the iterative approach, one could imagine

merging the outer and inner iterations of the algorithm (iterations for the

far-field condition and for the wall corrections) and hence performing a

single iteration loop.

• The methodology that has been developed here is compatible with hier-

archically refined grids. Such an approach has already been implemented

in [83] in the framework of a vortex panel-based VPM approach. As men-

tioned therein, one could also envisage building the solver upon existing

multi resolution libraries, as for example Chombo [89] or Overture [13].

• The immersed interface framework is also well-suited for applications in

fluid-structure interaction and multi phase flows. However, accounting for

moving and deforming bodies or interfaces requires keeping track of the

interface and hence using an efficient control point computation/update,

as the latter evolve in time and need to be recomputed at every time step.

214 Chapter 9. Conclusions

For applications in multi phase flows, the underlying level set framework

allows accounting for the surface tension, by means of the local surface

curvature computation. As to fluid-structure problems, the control points

could be considered as attached to their equilibrium position by virtual

“springs” of prescribed stiffness (depending on the structural properties

of the body), in the sense of the original immersed boundary method of

Peskin [101]. A more advanced treatment consists in coupling the flow

solver with a structural code, as classically done in the fluid-structure

interaction literature. The advantage of the present immersed interface

approach is that any type of boundary condition can be enforced on both

sides of the interface.

• As an improved time accuracy for the no-slip enforcing procedure has not

been achieved yet, some developments in this direction would allow con-

sistently increasing the order of convergence for the time discretization,

as it has been done for the spatial discretization.

• Finally, coming back to the initial development of this work and in the

light of the lessons learned thereafter, it appears that the hybrid scheme

could benefit from some of the interesting features of the immersed inter-

face approach. Indeed, it is more consistent than panel-based methods

and less oscillatory in time, when considering the drag for impulsively

started flows. Nevertheless, the immersed interface VPM solver turns

out to be less robust for under resolved cases in its current form. This

is actually problematic, since the coupling approach becomes interesting,

from a computational point of view, precisely when the VPM solver is

under resolved near the wall. It is thus not clear yet to what extent the

present method would enhance the Lagrangian part of the hybrid solver.

Yet, the tools developed in this work could be considered in order to im-

prove some of the computational operations from existing VPM solvers,

e.g. the particle-mesh interpolation, etc.

Furthermore, a different domain decomposition could be envisaged, by

using a VPM domain that does not include the near-wall region but

rather begins at a certain distance from it. The boundary condition on

that surface delimiting the VPM domain from the near-wall region could

then be enforced using the present immersed interface tools. However,

maybe this requires using a Schwarz iteration for the computation of the

boundary condition.

9.2. Perspectives 215

One could also consider another possibility for trying to remove the spuri-

ous oscillations from the drag signal (as observed in Chapter 2), while still

using overlapping domains and the VPM solver in its original form [83]

(thus using vortex panels). As shown in Fig. 9.1, a buffer layer could be

introduced (in which the solutions from the Eulerian and the Lagrangian

subdomains would agree well), as well as a blending zone near the wall.

Inside the blending zone, in the direct vicinity of the wall, the VPM solver

would not solve the Navier-Stokes equations (the proper vorticity is here

provided by the Eulerian near-wall solver and as soon as it is interpo-

lated to the VPM subdomain, it would be simply “frozen” for the next

sub step). As one approaches the outer boundary of this zone, the VPM

solver would be fully switched on and the vorticity would thus be prop-

erly updated. The only purpose of the VPM vorticity inside this blending

region is its contribution to the computation of the velocity, by means

of the Poisson solution. The errors usually made by the VPM solver

near the wall due to its under resolved nature (and which are believed to

contribute to the spurious oscillations) could thus be prevented.

ΩVPM

ΩFV

Ωc
FV

0

1 Solve Navier-Stokes using VPM

Buffer layer

Figure 9.1: Sketch of an alternative coupling approach for the hybrid Eulerian-
Lagrangian solver using overlapping domains, a buffer layer and a near-wall blending
region where the Navier-Stokes equations are only partially solved by the VPM solver,
depending on the distance to the wall.

216 Chapter 9. Conclusions

Bibliography

[1] OpenFOAM. http://www.openfoam.org.

[2] D. Adalsteinsson and J. A. Sethian. The Fast Construction of Extension

Velocities in Level Set Methods. J. Comput. Phys., 148(1):2–22, January

1999.

[3] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take

into account obstacles in incompressible viscous flows. Numer. Math.,

81(4):497–520, 1999.

[4] S. Backaert, P. Chatelain, and G. Winckelmans. Vortex particle-mesh

with immersed lifting lines for aerospace and wind engineering. In Sym-

posium on Particle Methods in Fluid Mechanics, Oct. 15-17, DTU Copen-

hagen, 2012. Procedia IUTAM.

[5] M. Bar-Lev and H. Yang. Initial flow field over an impulsively started

circular cylinder. J. Fluid Mech., 72(04):625–647, 1975.

[6] J. Barnes and P. Hut. A hierarchical O(N log N) force calculations algo-

rithm. Nature, 324:446–449, 1986.

[7] J. T. Beale and A. Majda. Rates of convergence for viscous splitting of

the Navier–Stokes equations. Math. Comput., 37(156):243–259, October

1981.

[8] M. Bergdorf. Multiresolution Particle Methods for the Simulation of

Growth and Flow. PhD thesis, ETH Zuerich, 2007.

[9] M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive

particle methods for convection-diffusion equations. Multiscale Model.

Sim., 4(1):328–357, 2005.

http://www.openfoam.org

218 BIBLIOGRAPHY

[10] M. Bergdorf and P. Koumoutsakos. A Lagrangian particle-wavelet

method. Multiscale Model. Sim., 5(3):980–995, 2006.

[11] I. Borazjani and F. Sotiropoulos. On the role of form and kinematics on

the hydrodynamics of self-propelled body/caudal fin swimming. J. Exp.

Biol., 213(1):89–107, 2010.

[12] I. Borazjani and F. Sotiropoulos. Numerical investigation of the hydro-

dynamics of anguilliform swimming in the transitional and inertial flow

regimes. J. Exp. Biol., 212(4):576–592, 2009.

[13] D. Brown, W. Henshaw, and D. Quinlan. Overture: An object-oriented

framework for solving partial differential equations. In Y. Ishikawa,

R. Oldehoeft, J. Reynders, and M. Tholburn, editors, Scientific Com-

puting in Object-Oriented Parallel Environments, volume 1343 of Lecture

Notes in Computer Science, pages 177–184. Springer Berlin / Heidelberg,

1997.

[14] D. Calhoun. A Cartesian grid method for solving the two-dimensional

streamfunction-vorticity equations in irregular regions. J. Comput. Phys,

176(2):231–275, 2002.

[15] C. Casciola, R. Piva, and P. Bassanini. Vorticity Generation on a Flat

Surface in 3D Flows. J. Comput. Phys., 129(2):345 – 356, 1996.

[16] P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, and

P. Koumoutsakos. Billion vortex particle direct numerical simulations of

aircraft wakes. Comput. Method. Appl. M., 197:1296 – 1304, 2008.

[17] P. Chatelain and P. Koumoutsakos. A Fourier-based elliptic solver for

vortical flows with periodic and unbounded directions. J. Comput. Phys.,

229(7):2425 – 2431, 2010.

[18] P. Chatelain and A. Leonard. Isotropic compact interpolation schemes

for particle methods. J. Comput. Phys., 227(6):3244 – 3259, 2008.

[19] R. Chatelin. Numerical methods for 3D Stokes flow: variable viscosity

fluids in a complex moving geometry; application to biological fluids. PhD

thesis, Universite Paul Sabatier - Toulouse III, 2013.

BIBLIOGRAPHY 219

[20] R. Chatelin and P. Poncet. Hybrid grid-particle methods and Penaliza-

tion: A Sherman-Morrison-Woodbury approach to compute 3D viscous

flows using {FFT}. J. Comput. Phys., 269(0):314 – 328, 2014.

[21] I.-L. Chern and Y.-C. Shu. A coupling interface method for elliptic in-

terface problems. J. Comput. Phys., 225(2):2138 – 2174, 2007.

[22] A. J. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech.,

57:785–796, 3 1973.

[23] J. P. Christiansen. Numerical solution of hydrodynamics by the method

of point vortices. J. Comput. Phys., 13:363–379, 1973.

[24] D. K. Clarke, H. A. Hassan, and M. D. Salas. Euler calculations for

multielement airfoils using Cartesian grids. AIAA Journal, 24(3):353–

358, March 1986.

[25] H. J. H. Clercx and C.-H. Bruneau. The normal and oblique collision of

a dipole with a no-slip boundary. Comput. Fluids, 35(3):245 – 279, 2006.

[26] H. J. H. Clercx and G. J. F. van Heijst. Dissipation of kinetic energy in

two-dimensional bounded flows. Phys. Rev. E, 65:066305, Jun 2002.

[27] R. Cocle. Combining the vortex-in-cell and parallel fast multipole meth-

ods for efficient domain decomposition simulations : DNS and LES ap-

proaches. PhD thesis, Université catholique de Louvain, Louvain-la-

Neuve, 2007.

[28] R. Cocle, G. Winckelmans, and Daeninck. Combining the vortex-in-cell

and parallel fast multipole methods for efficient domain decomposition

simulations. J. Comput. Phys., 227:2263–2292, 2008.

[29] W. Collins and S. Dennis. Flow past an impulsively started circular

cylinder. J. Fluid Mech., 60(01):105–127, 1973.

[30] W. Collins and S. Dennis. The initial flow past an impulsively started

circular cylinder. Q. J. Mech. Appl. Math., 26(1):53–75, 1973.

[31] G. Constantinescu and K. Squires. Numerical investigations of flow

over a sphere in the subcritical and supercritical regimes. Phys. Fluids,

16(5):1449–1466, 2004.

220 BIBLIOGRAPHY

[32] M. Coquerelle and G.-H. Cottet. A vortex level set method for the two-

way coupling of an incompressible fluid with colliding rigid bodies. J.

Comput. Phys., 227(21):9121 – 9137, 2008.

[33] G.-H. Cottet. A vorticity creation algorithm for the Navier-Stokes equa-

tions in arbitrary domain. Technical report.

[34] G.-H. Cottet and P. Koumoutsakos. Vortex Methods: Theory and Prac-

tice. Cambridge University Press, first edition, 2000.

[35] G.-H. Cottet and P. Poncet. Advances in direct numerical simulations

of 3D wall-bounded flows by Vortex-in-Cell methods. J. Comput. Phys.,

193(1):136–158, 2004.

[36] G.-H. Cottet and A. Magni. TVD remeshing formulas for particle meth-

ods. CR. Math., 347(23):1367 – 1372, 2009.

[37] G.-H. Cottet, B. Michaux, S. Ossia, and G. VanderLinden. A Comparison

of Spectral and Vortex Methods in Three-Dimensional Incompressible

Flows. J. Comput. Phys., 175(2):702 – 712, 2002.

[38] G.-H. Cottet and P. Poncet. Simulation and control of three-dimensional

wakes. Comput. Fluids, 33(5-6):697 – 713, 2004. Applied Mathematics

for Industrial Flow Problems.

[39] G.-H. Cottet and L. Weynans. Particle methods revisited: a class of high

order finite-difference methods. CR. Math., 343(1):51 – 56, 2006.

[40] G. Daeninck. Developments in hybrid approaches. Vortex method with

kwnown separation location. Vortex method with near-wall Eulerian

solver. RANS-LES coupling. PhD thesis, Université catholique de Lou-

vain, 2006.

[41] P. Degond and S. Mas-Gallic. The weighted particle method for

convection-diffusion equations. I. The case of an isotropic viscosity; II.

The anisotropic case. Math. Comput., 53(188):485–507, 1989.

[42] C. Doolan. Flow and Noise Simulation of the NASA Tandem Cylinder

Experiment using OpenFOAM. 15th AIAA/CEAS Aeroacoustics Con-

ference (30th AIAA Aeroacoustics Conference), AIAA 2009-3157, 2009.

BIBLIOGRAPHY 221

[43] U. D’Ortona, G. Keetels, D. Kolomenskiy, K. Schneider, E. Leriche,

H. Clercx, and B. Ben Beya. A comparison of different numerical meth-

ods to study the normal collision of a dipole with a non-slip boundary.

To be published, private communication.

[44] B. Engquist, A.-K. Tornberg, and R. Tsai. Discretization of Dirac delta

functions in level set methods. J. Comput. Phys., 207(1):28 – 51, 2005.

[45] R. D. Falgout, J. E. Jones, and U. M. Yang. Pursuing scalability for

hypre’s conceptual interfaces. ACM T. Math. Software, 31(3):326–350,

September 2005.

[46] R. D. Falgout and U. M. Yang. hypre: a Library of High Performance

Preconditioners. In Preconditioners, Lecture Notes in Computer Science,

pages 632–641, 2002.

[47] P. Farrell and J. Maddison. Conservative interpolation between vol-

ume meshes by local Galerkin projection. Comput. Method. Appl. M.,

200(1):89 – 100, 2011.

[48] P. Farrell, M. Piggott, C. Pain, G. Gorman, and C. Wilson. Conservative

interpolation between unstructured meshes via supermesh construction.

Comput. Method. Appl. M., 198(33):2632 – 2642, 2009.

[49] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.

P. IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[50] M. Gazzola, P. Chatelain, W. M. van Rees, and P. Koumoutsakos. Simu-

lations of single and multiple swimmers with non-divergence free deform-

ing geometries. J. Comput. Phys., 230(19):7093 – 7114, 2011.

[51] L. Ge and F. Sotiropoulos. A numerical method for solving the 3D

unsteady incompressible Navier-Stokes equations in curvilinear domains

with complex immersed boundaries. J. Comput. Phys., 225(2):1782 –

1809, 2007.

[52] L. Georges. Development and validation of a LES methodology for com-

plex wall-bounded flows : application to high-order structured and indus-

trial unstructured solvers. PhD thesis, Université catholique de Louvain,

Louvain-la-Neuve, 2007.

222 BIBLIOGRAPHY

[53] L. Georges, G. Winckelmans, and P. Geuzaine. Improving shock-free

compressible RANS solvers for LES on unstructured meshes. J. Comput.

Appl. Math., 215(2):419–428, 2008.

[54] A. Gilmanov and F. Sotiropoulos. A hybrid Cartesian/immersed bound-

ary method for simulating flows with 3D, geometrically complex, moving

bodies. J. Comput. Phys., 207(2):457 – 492, 2005.

[55] L. Greengard and V. Rohklin. A fast algorithm for particle simulations.

J. Comput. Phys., 73:325–348, 1987.

[56] L. F. Greengard. The rapid evaluation of potential fields in particle sys-

tems. PhD thesis, Yale University, 1987.

[57] S. Haykin and B. Van Veen. Signals and Systems, 2nd Ed. Wiley India

Pvt. Limited, 2007.

[58] J. L. Hess. Panel Methods in Computational Fluid Dynamics. Annu.

Rev. Fluid Mech., 22(1):255–274, 1990.

[59] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM

e-books. SIAM, 2008.

[60] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Par-

ticles. McGraw-Hill, New York, 1981.

[61] R. I. Issa. Solution of the implicitly discretised fluid flow equations by

operator-splitting. J. Comput. Phys., 62(1):40 – 65, 1986.

[62] R. James. The solution of Poisson’s equation for isolated source distri-

butions. J. Comput. Phys., 25(2):71 – 93, 1977.

[63] L. N. Jenkins, D. Neuhart, C. McGinley, and M. Choudhari, M.M Khor-

rami. Measurements of unsteady wake interference between tandem cylin-

ders. AIAA journal, 2006-3202, 006.

[64] T. A. Johnson and V. C. Patel. Flow past a sphere up to a Reynolds

number of 300. J. Fluid Mech., 378(-1):19–70, 1999.

[65] J. Katz and A. Plotkin. Low Speed Aerodynamics. Aerospace Series.

Cambridge University Press, 2001.

BIBLIOGRAPHY 223

[66] G. H. Keetels, U. D’Ortona, W. Kramer, H. J. H. Clercx, K. Schneider,

and G. J. F. van Heijst. Fourier spectral and wavelet solvers for the

incompressible Navier-Stokes equations with volume-penalization: Con-

vergence of a dipole-wall collision. J. Comput. Phys., 227(2):919 – 945,

2007.

[67] N. K. R. Kevlahan and O. V. Vasilyev. An adaptive wavelet collocation

method for fluid-structure interaction at high Reynolds numbers. SIAM

J. Sci. Comput., 26(6):1894–1915, 2005.

[68] M. Khorrami, M. Choudhari, L. N. Jenkins, and C. McGinley. Unsteady

Flowfield Around Tandem Cylinders as Prototype for Component Inter-

action in Airframe Noise. AIAA Paper, 2005-2866, 2005.

[69] J. Kim and P. Moin. Application of a fractionnal-step method to imcom-

pressible Navier-Stokes equations. J. Comput. Phys., 59:308–323, 1985.

[70] R. B. Kinney and M. A. Paolino. Flow Transient Near the Leading Edge

of a Flat Plate Moving Through a Viscous Fluid. J. Appl. Mech., 41:919–

924, 1974.

[71] P. Koumoutsakos. Inviscid Axisymmetrization of an Elliptical Vortex. J.

Comput. Phys., 138(2):821 – 857, 1997.

[72] P. Koumoutsakos, A. Leonard, and F. Pépin. Boundary Conditions for

Viscous Vortex Methods. J. Comput. Phys., 113(1):52 – 61, 1994.

[73] P. Koumoutsakos and A. Leonard. High-resolution simulations of the flow

around an impulsively started cylinder using vortex methods. J. Fluid

Mech., 296:1–38, 1995.

[74] K. Lackner. Computation of ideal MHD equilibria. Comput. Phys. Com-

mun., 12(1):33 – 44, 1976.

[75] M.-C. Lai, Z. Li, and X. Lin. Fast Solvers for 3D Poisson Equations

Involving Interfaces in a Finite or the Infinite Domain. J. Comput. Appl.

Math., 191(1):106–125, June 2006.

[76] H. Lamb. Hydrodynamics. Cambridge Univ. Press, Cambrdige (UK), 6th

edition, 1932.

224 BIBLIOGRAPHY

[77] R. J. Leveque and Z. Li. The Immersed Interface Method for Elliptic

Equations with Discontinuous Coefficients and Singular Sources. SIAM

J. Numer. Anal., pages 1019–1044, 1994.

[78] Z. Li and K. Ito. Maximum Principle Preserving Schemes for Inter-

face Problems with Discontinuous Coefficients. SIAM J. Sci. Comput.,

23(1):339–361, January 2001.

[79] M. J. Lighthill. Introduction. Boundary Layer Theory. In L. Rosen-

head, editor, Laminar Boundary Layers, pages 46–113. Oxford University

Press, 1963.

[80] M. N. Linnick and H. F. Fasel. A high-order immersed interface method

for simulating unsteady incompressible flows on irregular domains. J.

Comput. Phys., 204(1):157 – 192, 2005.

[81] D. Lockard, M. Khorrami, M. Choudhari, F. Hutcheson, and T. Brooks.

Tandem Cylinder Noise Predictions. Proccedings of the 13th AIAA/CEAS

Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), AIAA

2007-3450, 2007.

[82] D. Lockard. Tandem cylinder benchmark problem. Technical presenta-

tion, computational aeroscience branch NASA LaRC, 2009.

[83] T. Lonfils. Numerical investigations of vortex systems: time-developing

and space-developing simulations. Improvements of the vortex-in-cell

method for external flows using both an immersed boundary approach and

a multiple-space resolution technique. PhD thesis, Université catholique

de Louvain, 2010.

[84] A. Magni and G.-H. Cottet. Accurate, non-oscillatory, remeshing schemes

for particle methods. J. Comput. Phys., 231(1):152 – 172, 2012.

[85] S. Majumdar, G. Iaccarino, and P. Durbin. RANS solvers with adap-

tive structured boundary non-conforming grids. Annual Research Briefs,

pages 353–366, 2001.

[86] Y. Marichal, C. Carton, L. Bricteux, M. Duponcheel, G. Winckelmans,

and P. Geuzaine. DDES of the flow past a pair of cylinders in tandem

configuration. Proceedings of the AIAA BANC-I workshop (Stockholm,

Sweden), June 2010.

BIBLIOGRAPHY 225

[87] Y. Marichal, P. Chatelain, and G. Winckelmans. Unbounded Immersed

Interface solver for Vortex Particle-Mesh methods. In Symposium on Par-

ticle Methods in Fluid Mechanics, Oct. 15-17, DTU Copenhagen, 2012.

Procedia IUTAM.

[88] Y. Marichal, P. Chatelain, and G. Winckelmans. An immersed interface

solver for the 2-D unbounded Poisson equation and its application to

potential flow. Comput. Fluids, 96(0):76 – 86, 2014.

[89] D. Martin, P. Colella, and D. Graves. A cell-centered adaptive projection

method for the incompressible Navier-Stokes equations in three dimen-

sions. J. Comput. Phys., 227(3):1863–1886, 2008.

[90] P. McCorquodale, P. Colella, G. Balls, and S. Baden. A Local Corrections

Algorithm for Solving Poisson’s Equation in Three Dimensions. Commu-

nications in Applied Mathematics and Computational Science, 2(1):57–

81, 2007.

[91] G. Miller. An iterative boundary potential method for the infinite domain

Poisson problem with interior Dirichlet boundaries. J. Comput. Phys.,

227(16):7917 – 7928, 2008.

[92] R. Mittal and G. Iaccarino. Immersed Boundary Methods. Annu. Rev.

Fluid Mech., 37:239–261, 2005.

[93] J. Monaghan. Extrapolating B splines for interpolation. J. Comput.

Phys., 60(2):253 – 262, 1985.

[94] L. Neuhart, a. M. C. Jenkins, and M. Khorrami. Measurements of the

Flowfield Interaction Between Tandem Cylinders. In Aeroacoustics Con-

ferences, volume AIAA 2009-3275, 2009.

[95] J. N. Newman. Marine hydrodynamics. MIT Press, Cambridge, Mass.,

1977.

[96] F. Noca, D. Shiels, and D. Jeon. Measuring Instantaneous Fluid Dynamic

Forces on Bodies, Using Only Velocity Fields and Their Derivatives. J.

Fluid. Struct., 11(3):345 – 350, 1997.

[97] F. Noca, D. Shiels, and D. Jeon. A Comparison of Methods for Eval-

uating Time -dependent Fluid Dynamic Forces on Bodies, Using Only

226 BIBLIOGRAPHY

VelocityFields and Their Derivatives. J. Fluid. Struct., 13(5):551 – 578,

1999.

[98] M. Ould-Salihi, G.-H. Cottet, and M. El Hamraoui. Blending Finite-

Difference and Vortex Methods for Incompressible Flow Computations.

SIAM J. Sci. Comput., 22(5):1655–1674, 2001.

[99] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based

Fast Local Level Set Method. J. Comput. Phys., 155(2):410–438, Novem-

ber 1999.

[100] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–

517, 1 2002.

[101] C. Peskin. Numerical analysis of blood flow in the heart. J. Comput.

Phys., 25(3):220–252, 1977.

[102] P. Ploumhans and G. S. Winckelmans. Vortex methods for high-

resolution simulations of viscous flow past bluff bodies of general ge-

ometry. J. Comput. Phys., 165:354–406, 2000.

[103] P. Ploumhans, G. S. Winckelmans, J. K. Salmon, A. Leonard, and

M. S. Warren. Vortex methods for direct numerical simulation of three-

dimensional bluff body flows: application to the sphere at Re = 300, 500,

and 1000. J. Comput. Phys., 178(2):427–463, 2002.

[104] P. Poncet. Analysis of an immersed boundary method for three-

dimensional flows in vorticity formulation. J. Comput. Phys., 228:7268–

7288, 2009.

[105] P. Poncet. Topological aspects of three-dimensional wakes behind rotary

oscillating cylinders. J. Fluid Mech., 517:27–53, 9 2004.

[106] P. Poncet. Analysis of Direct Three-Dimensional Parabolic Panel Meth-

ods. SIAM J. Numer. Anal., 45(6):2259–2297, October 2007.

[107] S. C. Reddy and L. N. Trefethen. Stability of the method of lines. Numer.

Math., 62(1):235–267, 1992.

[108] L. Rosenhead. The Formation of Vortices from a Surface of Discontinuity.

P R Soc Lond A-Conta, 134(823):170–192, 1931.

BIBLIOGRAPHY 227

[109] D. Rossinelli, M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. GPU

accelerated simulations of bluff body flows using vortex particle methods.

J. Comput. Phys., 229(9):3316 – 3333, 2010.

[110] P. G. Saffman. Vortex Dynamics. Cambridge Univ. Press, New-York,

1992.

[111] J. K. Salmon and M. S. Warren. Skeletons from treecode closet. SIAM

J. Sci. Comput., 111(1):136–155, 1994.

[112] I. Schoenberg. Contributions to the Problem of Approximation of

Equidistant Data by Analytic Functions. In C. Boor, editor, I. J.

Schoenberg Selected Papers, Contemporary Mathematicians, pages 3–57.

Birkhauser Boston, 1988.

[113] J. A. Sethian. Evolution, Implementation, and Application of Level Set

and Fast Marching Methods for Advancing Fronts. J. Comput. Phys.,

169(2):503–555, May 2001.

[114] D. Shiels, A. Leonard, and A. Roshko. Flow-induced vibration of a cir-

cular cylinder at limiting structural parameters. J. of Fluid. Struct.,

15(1):3–21, 2001.

[115] C.-W. Shu. High Order Weighted Essentially Nonoscillatory Schemes for

Convection Dominated Problems. SIAM Rev., 51(1):82–126, February

2009.

[116] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for

aerodynamic flows. AIAA-Paper 92-0439, (1):5–21, 1992.

[117] P. Spalart, S. Deck, M. Shur, K. Squires, M. Strelets, and A. Travin.

A new version of detached-eddy simulation, resistant to ambiguous grid

densities. Theor. Comp. Fluid Dyn., 20:181–195, 2006.

[118] G. Strang. On the construction and comparison of difference schemes.

SIAM J. Numer. Anal., 5(3):506–517, 1968.

[119] M. Strelets. Detached Eddy Simulation of Massively Separated Flows.

AIAA 2001-0879, 2001.

[120] P. Swarztrauber. A direct method for the discrete solution of separable

elliptic equations. SIAM J. Numer. Anal., 11:1136–1150, 1974.

228 BIBLIOGRAPHY

[121] P. Swarztrauber, R. A. Sweet, and J. C. Adams. Fishpack: Efficient

Fortran Subprograms for the Solution of Elliptic Partial Differential

Equations. Technical report, National Center for Atmospheric Research,

http://www.cisl.ucar.edu/css/software/fishpack/technote.ps, July 1999.

[122] P. Swarztrauber and R. Sweet. The Fourier and cyclic reduction meth-

ods for solving Poisson’s equation. In J. Schetz and A. Fuhs, editors,

Handbook of fluid dynamics and fluid machinery. John Wiley & Sons,

New York, 1996.

[123] W. Sweldens and P. Schroeder. Building your own wavelets at home,

1996. Wavelets in Computer Graphics, 15-87. ACM SIGGRAPH Course

notes.

[124] F. Thirifay and G. Winckelmans. Development of a Lagrangian method

for combustion and application to the planar methane air jet diffusion

flame. J. Turbul., 3(59):1468–5248, 2002.

[125] A. Tornberg and B. Engquist. Regularization Techniques for Numerical

Approximation of PDEs with Singularities. J. Sci. Comput., 19:527–552,

2002.

[126] Y.-H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method

for flow in complex geometry. J. Comput. Phys., 192(2):593 – 623, 2003.

[127] W. M. van Rees, A. Leonard, D. Pullin, and P. Koumoutsakos. A compar-

ison of vortex and pseudo-spectral methods for the simulation of periodic

vortical flows at high Reynolds numbers. J. Comput. Phys., 230(8):2794

– 2805, 2011.

[128] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach

to computational continuum mechanics using object-oriented techniques.

Comput. Phys., 12,6:620–631, 1998.

[129] A. Wiegmann and K. P. Bube. The Explicit-Jump Immersed Interface

Method: Finite Difference Methods For PDE With Piecewise Smooth

Solutions. SIAM J. Numer. Anal., 37:827–862, 2000.

[130] J. Williamson. Low-storage Runge-Kutta schemes. J. Comput. Phys.,

35(1):48 – 56, 1980.

BIBLIOGRAPHY 229

[131] G. Winckelmans, R. Cocle, L. Dufresne, and R. Capart. Vortex methods

and their application to trailing wake vortex simulations. CR. Phys.,

6(4-5):467 – 486, 2005. Aircraft trailing vortices.

[132] G. Winckelmans. Vortex methods. In E. Stein, R. de Borst, and

T. Hughes, editors, Encyclopedia of computational mechanics, volume

3 (Fluids). John Wiley & sons, 2004.

[133] J. Wu and J. Wu. Boundary Vorticity Dynamics Since Lighthill’s 1963 Ar-

ticle: Review and Development. Theor. Comp. Fluid Dyn., 10(1-4):459–

474, 1998.

230 BIBLIOGRAPHY

Appendix A

One-sided stencils

The computation of the correction terms for the direction-splitting approach

requires a systematic way to provide one-sided finite difference stencils. The

present appendix provides the required tools, along with an analysis of their

accuracy.

Assume we have grid points with positions xp and xα is the position of the

interface. The relative position of the interface with respect to the the grid

points is arbitrary.

Consider a function u(x) ∈ CN+2 and define ∆x̃p
∆= (xp − xα)/h (h being

the grid spacing), up
∆= u(xp) and u

(k)
α

∆= (dku/dxk)(xα).

Case 1 The most frequently required stencil in the splitting approach consists

in expressing the kth derivative of u at xα as a function of the provided qth

derivative of u at xα and of N grid point values

u(k)
α = (Sk

q)α u(q)
α +

N∑

p=1

(Sk
q)p up +O(hs) ,

with s the order of the leading error term. The procedure described hereafter

generalizes the approach followed in [80], where only uα may be prescribed, not

its derivatives.

The way to handle this problem requires first to form the following linear

combination using the Taylor series of the function u(x) evaluated at the grid

232 Appendix A. One-sided stencils

nodes and developed around xα

C1 u1 + C2 u2 + ... + CN uN

= uα [C1 + C2 + ... + CN]

+ h u(1)
α [C1 ∆x̃1 + C2 ∆x̃2 + ... + CN ∆x̃N]

+
h2

2
u(2)

α [C1 ∆x̃2
1 + C2 ∆x̃2

2 + ... + CN ∆x̃2
N]

+ ...

+
hN

N !
u(N)

α [C1 ∆x̃N
1 + C2 ∆x̃N

2 + ... + CN ∆x̃N
N]

+
h(N+1)

(N + 1)!
u(N+1)

α [C1 ∆x̃
(N+1)
1 + C2 ∆x̃

(N+1)
2 + ... + CN ∆x̃

(N+1)
N]

+ O(hN+2) .

The values for the coefficients Cp have to be chosen so that all terms in

brackets vanish, except for both brackets that multiply the kth and qth deriva-

tives. This leads to the definition of the following (N + 1)×N matrix

M ∆=




1 1 . . . 1

∆x̃1 ∆x̃2 . . . ∆x̃N

∆x̃2
1 ∆x̃2

2 . . . ∆x̃2
N

...
...

. . .
...

∆x̃N
1 ∆x̃N

2 . . . ∆x̃N
N




.

Next, let us define Mq as the square matrix including all rows of M, except

for the row with the terms ∆x̃q
p (row q +1). The row q +1 is noted rT

q and the

stencil can then be expressed as

(Sk
q)p =

k!

hk
(M−1

q ek
q)p

(Sk
q)α = −hq−kk!

q!
rT

q M−1
q ek

q ,

233

where ek is a (N+1) vector defined by (ek)i = δki and ek
q is equal to ek, without

the entry q + 1. The order of the leading error term is then s = N + 1 − k,

which is independent of q. This means that we can impose whatever derivative

at xα, without affecting the order of the leading error term.

For growing N , the conditioning of Mq deteriorates. However, in our case,

N = 3 most of the time and the procedure remains applicable without any

difficulty.

Case 2 Another similar case is the expression of the kth derivative of u at xα

as a function of N grid point values, without other information.

u(k)
α =

N∑

p=1

T k
p up +O(hs) ,

The stencil reads

T k
p =

k!

hk
(M−1

N ek
N)p .

Here, the order of the leading error term is s = N − k.

234 Appendix A. One-sided stencils

Appendix B

Additional immersed

interface tools

In this appendix, some additional corrected stencils are provided for the com-

putation of the velocity field and of the wall data required by the mesh-particle

interpolation (see Chapter 6).

B.1 Computation of the velocity field

Assuming that the streamfunction Ψ has been computed as the solution of the

Poisson equation ∇2Ψ = −ω using the tools from Chapter 4, the velocity field

u = (u, v) is computed as

u = ∇× (Ψêz) or also u =
∂Ψ

∂y
and v = −∂Ψ

∂x
. (B.1)

The wall correction procedure from Chapter 4 may also be applied here. The

classical second order centered scheme for the first derivative can be used by

simply adding a correction term when the stencil crosses the wall. Considering

an irregular grid point xij = (xi, yj) and the associated control point xα =

(xi, yα) (along a vertical grid line) with yj < yα < yj+1, the scheme for u reads

ui,j = R−1 Ψi,j−1 + R+1 (Ψi,j+1 − J+
α)

ui,j+1 = R−1 (Ψi,j − J−
α) + R+1 Ψi,j+2 ,

236 Appendix B. Additional immersed interface tools

with R−1 = −1/(2∆y) and R+1 = 1/(2∆y). The definitions of the correction

terms J+
α and J−

α do not depend on the type of derivative that is being de-

scretized. In Chapter 4, the second derivative was corrected (as opposed to

the present first derivative), but the expressions for J+
α and J−

α are still appli-

cable here. Both corrections J+
α and J−

α require the evaluation of the partial

derivatives of Ψ at xα, here up to order 2, in order to preserve the local second

order accuracy of the scheme (as opposed to the third order accuracy required

in Chapter 4). It should also be observed that only control points on grid lines

x = cst are needed here (similarly, v only uses control points on y = cst grid

lines).

Assume now that the body is in the domain y < yα. Since Ψ = Ψ at

xα (and inside the body), we can write the following one-sided stencil from

Appendix A

(
∂kΨ

∂yk

)+

α

= (Sk
0)α Ψ +

2∑

p=1

(Sk
0)p Ψi,j+p+1 +O(h3−k) ,

As a matter of convenience, one may actually reuse the correction terms J+
α

and J+
α determined for the computation of ∇2Ψ, (this increases the accuracy,

though it is not needed here). The field v may be computed using a similar

procedure.

B.2 Computation of the wall data required by

the mesh-particle interpolation

In a 2-D vortex particle-mesh method, the following evolution equations have

to be solved for all particles

dxp

dt
= up

dωp

dt
= ν

(
∇2ω

)
p

.

The right hand sides of both equations are first computed on a grid using

(corrected) finite differences (the velocity computation is detailed in previous

Section B.1 whereas, the computation of the Laplacian of the vorticity is de-

scribed in Chapter 5). Then, the computed information has to be mapped onto

the particles using the M2P interpolation. Applying the M2P approach from

B.2. Wall data for mesh-particle interpolation 237

Chapter 6 to those grid fields requires the knowledge of some additional data at

the wall. Recalling also from Chapter 5 the notation ξ for the current direction

coordinate and η for the transverse coordinate at a control point xα, we need

the following quantities to apply the M2P approach to u and ∇2ω

uα ,

(
∂u

∂ξ

)

α

,
(
∇2ω

)
α

and
∂

∂ξ

(
∇2ω

)
α

.

The computation of uα requires the computation of (∂Ψ/∂ξ)α and (∂Ψ/∂η)α

for uα and vα, according to Eq. (B.1). Using the stencils from Appendix A,

the derivative in the current direction is simply computed as

(
∂Ψ

∂ξ

)

α

= (S1
0)α Ψ +

3∑

p=1

(S1
0)p Ψξ,p +O(h3) ,

with Ψξ,p the solution values at the grid points xξ,p shown in Fig. B.1.

body

flow

xξ,1 xξ,2 xξ,3

xη,1

xη,2

xη,3

Figure B.1: Sketch of the different stencil configurations allowing to compute the
partial derivatives in the ξ and η directions: control point (blue cross) and the asso-
ciated irregular points (blue circles); stencil nodes for the current direction (xξ,p, red
bullets); stencil points for the transverse direction (xη,p, red circles); stencil nodes
required for the interpolation at xη,p (green bullets).

238 Appendix B. Additional immersed interface tools

Similarly to the compatible extrapolation approach from Chapter 5, the

derivative in the transverse direction is computed as

(
∂Ψ

∂η

)

α

= (S1
0)α Ψ +

3∑

p=1

(S1
0)p Ψη,p +O(h3)

Ψη,p =
4∑

s=1

T 0
s Ψη,p,s +O(h4) ,

with Ψη,p,s the solution values at the grid nodes (green bullets in Fig. B.1) that

are required to interpolate the value Ψη,p at the points xη,p. Both derivatives

give us an expression for the wall velocity uα and vα.

In order to compute the derivative of u in the current direction, we first need

to compute the velocity field uij based on Ψij , following Appendix B.1. The

next step follows the lines of the above derivation of Ψ. For the u-component,

we thus have

(
∂u

∂ξ

)

α

= (S1
0)α uα +

3∑

p=1

(S1
0)p uξ,p +O(h) .

The order of the leading error term is formally 3 when both uij and uα are exact.

If only uij was exact, the error would have been O(h2), since (S1
0)α ∼ h−1 and

the error for uα is O(h3). However, uij is computed using second order finite

differences and hence the error for (∂u/∂ξ)α is O(h). The v-component is

treated equivalently.

For the vorticity we have a Neumann boundary condition (∂ω/∂n)α and the

compatible extrapolation procedure from Chapter 5 has to be applied in order

to compute (∇2ω)α. Eq. (5.7) provides an expression for ωα, thus transforming

a Neumann boundary condition into a Dirichlet condition. The desired wall

quantity can be written as a function of the current and transverse second

derivatives

(∇2ω)α =

(
∂2ω

∂ξ2

)

α

+

(
∂2ω

∂η2

)

α

.

B.2. Wall data for mesh-particle interpolation 239

The latter are provided by

(
∂2ω

∂ξ2

)

α

= (S2
0)α ωα +

3∑

p=1

(S2
0)p ωξ,p +O(h2)

(
∂2ω

∂η2

)

α

= (S2
0)α ωα +

3∑

p=1

(S2
0)p ωη,p +O(h2)

ωη,p =

4∑

s=1

T 0
s ωη,p,s +O(h4) ,

The associated derivative in the current direction also requires the precompu-

tation of the field (∇2ω)ij using the tools from Chapter 5. It is then given

by

∂

∂ξ
(∇2ω)α = (S1

0)α (∇2ω)α +

3∑

p=1

(S1
0)p (∇2ω)ξ,p +O(h) .

Again, the accuracy of the leading error term deteriorates because of the second

order field (∇2ω)ij .

240 Appendix B. Additional immersed interface tools

Appendix C

Fourier transforms :

additional expressions

In this appendix, the Fourier transforms used in Chapter 8 are defined and the

expression of some redistribution kernels in the Fourier space are also provided.

C.1 Definitions of the Fourier transforms

The following definitions are taken from [57]:

Fourier Transform (FT): non periodic continuous functions f(x)

f(x) =
1

2π

∫ ∞

−∞
F̂ (k) ejkx dk F̂ (k) =

∫ ∞

−∞
f(x) e−jkx dx

x ∈ R k =
2π

λ
∈ R

Fourier Series (FS): periodic continuous functions f(x)

f(x) =

∞∑

l=−∞
F̃ [l] ejlk0x F̃ [l] =

1

L

∫ L

0

f(x) e−jlk0x dx

x ∈ R, Period L l ∈ Z

k0
∆=

2π

L

242 Appendix C. Fourier transforms

Discrete Time Fourier Transform (DTFT): non periodic discrete func-

tions f [p]

f [p] =
1

2π

∫ π

−π

F̂ (K) ejKp dK F̂ (K) =

∞∑

p=−∞
f [p] e−jKp

p ∈ Z K ∈ R, Period 2π

Discrete Time Fourier Series (DTFS): periodic discrete functions f [p]

f [p] =
N−1∑

l=0

F̃ [l] ejlpK0 F̃ [l] =
1

N

N−1∑

p=0

f [p] e−jlpK0

p ∈ Z, Period N l ∈ Z, Period N

K0
∆=

2π

N

C.2 Some redistribution kernels with their Fourier

transforms

For a detailed derivation of the following schemes refer to Cottet & Koumout-

sakos [34].

• M1 kernel :

M1(ξ) =





0 if |ξ| > 1

2 ,

1 if |ξ| ≤ 1
2 ,

FT{M1}(k) =
2

k
sin

(
k

2

)
.

• M2 kernel :

M2(ξ) =





0 if |ξ| > 1 ,

1− |ξ| if |ξ| ≤ 1 ,

FT{M2}(k) =

(
2

k
sin

(
k

2

))2

.

C.2. Some redistribution kernels with their Fourier transforms 243

• M3 kernel :

M3(ξ) =





0 if |ξ| > 3
2 ,

1
2 (3

2 − |ξ|)2 if 1
2 < |ξ| ≤ 3

2 ,

1
2 (3

2 + |ξ|)2 − 3
2 (1

2 + |ξ|)2 if |ξ| ≤ 1
2 ,

FT{M3}(k) =

(
2

k
sin

(
k

2

))3

.

• M4 kernel :

M4(ξ) =






0 if |ξ| > 2 ,

1
6 (2− |ξ|)3 if 1 < |ξ| ≤ 2 ,

1
6 (2− |ξ|)3 − 4

6 (1− |ξ|)3 if |ξ| ≤ 1 ,

FT{M4}(k) =

(
2

k
sin

(
k

2

))4

.

• M ′
4 kernel (see Monaghan [93]) :

M ′
4(ξ) =





0 if |ξ| > 2 ,

1
2 (2 − |ξ|)2(1− |ξ|) if 1 < |ξ| ≤ 2 ,

1− 5
2 |ξ|2 + 3

2 |ξ|3 if |ξ| ≤ 1 ,

FT{M ′
4}(k) = −2 cos

(
k

2

)(
2

k
sin

(
k

2

))3

+ 3

(
2

k
sin

(
k

2

))4

.

• M∗∗
6 kernel (see Bergdorf [8]) :

M∗∗
6 (ξ) =






0 if |ξ| > 3 ,

− 1
24 (|ξ| − 2)(|ξ| − 3)3(5|ξ| − 8) if 2 < |ξ| ≤ 3 ,

1
24 (25|ξ|3 − 114|ξ|2 + 153|ξ| − 48)

(|ξ| − 1)(|ξ| − 2) if 1 < |ξ| ≤ 2 ,

− 1
12 (25|ξ|4 − 38|ξ|3 − 3|ξ|2 + 12|ξ|+ 12)

(|ξ| − 1) if |ξ| ≤ 1 ,

244 Appendix C. Fourier transforms

• Λ2 kernel :

Λ2(ξ) =





0 if |ξ| > 3
2 ,

1
2 (1− |ξ|)(2 − |ξ|) if 1

2 < |ξ| ≤ 3
2 ,

1− |ξ|2 if |ξ| ≤ 1
2 ,

• Λ3 kernel :

Λ3(ξ) =





0 if |ξ| > 2 ,

1
6 (1− |ξ|)(2 − |ξ|)(3 − |ξ|) if 1 < |ξ| ≤ 2 ,

1
2 (1− |ξ|2)(2 − |ξ|) if |ξ| ≤ 1 ,

Appendix D

Vorticity flux associated to

a no-slip condition

This appendix complements Chapter 3, in particular Section 3.3, and forms

a brief reminder of the developments made in [72] about the way to link the

vorticity flux and the vortex sheet in the context of enforcing a no-slip condition

at a solid wall in vortex methods.

Let us consider the 2-D flow past a solid body with a prescribed velocity

boundary condition u = ub(x, t) on its boundary ∂Ωb. Consider also the vor-

ticity field at time t + ∆t resulting from the advancement of the solution from

t to t + ∆t by solving Eq. (3.2) using a no-through flow condition on ∂Ωb and

starting from an admissible vorticity field at time t (i.e. in addition to the

no-through flow condition, the solution also satisfies the no-slip condition on

∂Ωb at t).

The velocity field at t+∆t, satisfying the no-through flow condition u ·n =

ub ·n (n being the outward pointing normal vector to ∂Ωb), can be obtained by

solving the Poisson Eq. (3.3) as a function of the vorticity field at t+∆t. Yet, as

explained in Section 3.3, this vorticity field has likely become non-admissible,

since it has been advanced in time only enforcing the no-through flow condition.

The velocity field hence presents a non-zero tangential slip velocity at the wall

that can also be seen as an infinitely thin vortex sheet ∆γ.

This vortex sheet is also obtained, along with the velocity, when solving the

Poisson equation. However, the flow domain Ωf = R2/Ωb being not simply-

connected, the uniqueness of the Poisson equation solution requires the addition

246 Appendix D. Vorticity flux associated to a no-slip condition

of an integral constraint on the vortex sheet circulation Γ∆γ (see [65])

Γ∆γ =

∮

∂Ωb

∆γ ds . (D.1)

According to Lighthill’s model [79], the vortex sheet is part of the flow, as it

represents the amount of vorticity (yet, it is still singular) that complements

the actual vorticity field so as to yield the no-slip condition just below the panel

(on the body side).

Considering the flow circulation Γf
∆=
∫
Ωf

ω dx and Kelvin’s theorem in

Ωf , we further obtain

dΓf

dt
=

∫

Ωf

ν∇2ω dx = −
∮

∂Ωb

ν
∂ω

∂n
dx ,

because ω → 0 at infinity. If the body is subjected to a solid body rotation

speed Wb(t), this movement can be represented by a uniform extension of the

vorticity ω = 2Wb(t) inside the body Ωb, thus implying a body circulation

Γb
∆=
∫
Ωb

ω dx = 2WbSb, with Sb the area of the body. Applying again Kelvin’s

theorem in the whole domain R2, we obtain

dΓf

dt
= −2Sb

dWb

dt
.

Integrating this equation over the time interval [t, t + ∆t] results in

∆Γf
∆=

∫ t+∆t

t

dΓf

dt′
dt′ = −2Sb [Wb(t + ∆t)−Wb(t)] .

Based on the interpretation of the vortex sheet as a part of the flow, we can

model the increment ∆Γf of circulation coming from the body and that must

enter the fluid as

∆Γf =

∮

∂Ωb

∆γ dx ,

which leads to

−
∮

∂Ωb

(∫ t+∆t

t

ν
∂ω

∂n
dt′
)

dx =

∮

∂Ωb

∆γ dx .

We may furthermore assume that this relation holds locally, given the inter-

pretation of the vortex sheet as the vorticity feeding the boundary layer (by

247

means of the vorticity flux), so as to cancel the residual slip velocity. Thus we

have

∆γ = −
∫ t+∆t

t

ν
∂ω

∂n
dt or

∂(∆γ)

∂t
= −ν

∂ω

∂n
,

if the vortex sheet is given a time continuous meaning over the time step (i.e.

∆γ(t) is a smooth function of the time and ∆γ → 0 when ∆t→ 0), as suggested

in [33]. Despite being derived for a simply-connected domain, the above relation

is assumed to remain valid for any incompressible viscous flow in the presence

of solid walls and the additional assumption that the flux is constant over the

time step leads to the following widely used expression

−ν
∂ω

∂n
=

∆γ

∆t
.

When Wb(t) is constant, the increment of total circulation is ∆Γf = 0, but the

local vorticity flux is of course still non zero.

248 Appendix D. Vorticity flux associated to a no-slip condition

Appendix E

Time integration schemes

for VPM methods

Several time integration schemes complementing Chapter 3 are presented here.

This appendix considers time integration schemes that solve the Navier-Stokes

equations, on the one hand, with a prescribed vorticity flux condition at the

wall and, on the other hand, with a no slip condition at the wall (the vorticity

flux is then linked to the residual vortex sheet). The computation of the wall

contributions (for both aforementioned flux types) within the different schemes

is provided in Appendix E.7. In Appendix E.8, some details are also given about

the “PW” scheme [102] used for the computation of the analytical solution

associated to the near-wall diffusion.

For the following, computational steps of the RK2 variants that differ from

the original RK2 solver from Section 3.2 are colored dark red, in order to

facilitate the distinction.

250 Appendix E. Time integration schemes for VPM methods

E.1 Low storage RK3

In Chapter 3, a VPM solver enforcing a no-through flow condition at the solid
wall was presented, using a mid-point second order Runge-Kutta scheme. The
following VPM solver scheme is based on a low storage third order Runge-
Kutta scheme from [130]. The notations are similar to those of Chapter 3:

Sub step 1 : from tn to tn+ 1
3

∆= tn + 1
3
∆t

• Advection : ωn
ij

solve Eq. (3.3)
−−−−−−−−−−→ un

ij

un
ij

M2P to x
n
p

−−−−−−−−→ un
p

(Gu)p ← un
p

x
n+ 1

3
p = xn

p +
1

3
∆t (Gu)p

• Diffusion : ωn
ij

∇
2(·)

−−−−→
`

∇
2ω

´n

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

∂Ω

= qn
ω

`

∇
2ω

´n

ij

M2P to x
n
p

−−−−−−−−→
`

∇
2ω

´n

p

(G
∇2ω)p ← ν

`

∇
2ω

´n

p

ω
n+ 1

3
p = ωn

p +
1

3
∆t (G

∇2ω)p

ω
n+ 1

3
p

P2M from x

n+ 1
3

p
−−−−−−−−−−−−→ ω

n+ 1
3

ij

Sub step 2 : from tn+ 1
3 to tn+ 3

4
∆= tn + 3

4
∆t

• Advection : ω
n+ 1

3
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
3

ij

u
n+ 1

3
ij

M2P to x

n+ 1
3

p
−−−−−−−−−−→ u

n+ 1
3

p

(Gu)p ← −
5

9
(Gu)p + u

n+ 1
3

p

x
n+ 3

4
p = x

n+ 1
3

p +
15

16
∆t (Gu)p

• Diffusion : ω
n+ 1

3
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 1
3

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
3

∂Ω

= q
n+ 1

3
ω

`

∇
2ω

´n+ 1
3

ij

M2P to x

n+ 1
3

p
−−−−−−−−−−→

`

∇
2ω

´n+ 1
3

p

(G
∇2ω)p ← −

5

9
(G

∇2ω)p + ν
`

∇
2ω

´n+ 1
3

p

ω
n+ 3

4
p = ω

n+ 1
3

p +
15

16
∆t (G

∇2ω)p

ω
n+ 3

4
p

P2M from x

n+ 3
4

p
−−−−−−−−−−−−→ ω

n+ 3
4

ij

E.1. RK3 251

Sub step 3 : from tn+ 3
4 to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 3

4
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 3
4

ij

u
n+ 3

4
ij

M2P to x

n+ 3
4

p
−−−−−−−−−−→ u

n+ 3
4

p

(Gu)p ← −
153

128
(Gu)p + u

n+ 3
4

p

xn+1
p = x

n+ 3
4

p +
8

15
∆t (Gu)p

• Diffusion : ω
n+ 3

4
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 3
4

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 3
4

∂Ω

= q
n+ 3

4
ω

`

∇
2ω

´n+ 3
4

ij

M2P to x

n+ 3
4

p
−−−−−−−−−−→

`

∇
2ω

´n+ 3
4

p

(G
∇2ω)p ← −

153

128
(G

∇2ω)p + ν
`

∇
2ω

´n+ 3
4

p

ωn+1
p = ω

n+ 3
4

p +
8

15
∆t (G

∇2ω)p

ωn+1
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1
ij

Redistribution : after nr time steps, reinitialize the set of particles.

252 Appendix E. Time integration schemes for VPM methods

E.2 DRK2-END

Decomposed RK2 scheme computing the wall contribution at the END of the

time step.

Predictor : from tn to tn+ 1
2

∆= tn + 1
2
∆t

• Advection : ωn
ij

solve Eq. (3.3)
−−−−−−−−−−→ un

ij

un
ij

M2P to x
n
p

−−−−−−−−→ un
p

x
n+ 1

2
p = xn

p +
∆t

2
un

p

• Diffusion : ωn
ij

∇
2(·)

−−−−→
`

∇
2ω

´n

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

∂Ω

= 0

`

∇
2ω

´n

ij

M2P to x
n
p

−−−−−−−−→
`

∇
2ω

´n

p

ω
n+ 1

2
p = ωn

p +
∆t

2
ν

`

∇
2ω

´n

p

ω
n+ 1

2
p

P2M from x

n+ 1
2

p
−−−−−−−−−−−−→ ω

n+ 1
2

ij

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
2

ij

u
n+ 1

2
ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→ u

n+ 1
2

p

xn+1
p = xn

p + ∆t u
n+ 1

2
p

• Diffusion : ω
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

∂Ω

= 0

`

∇
2ω

´n+ 1
2

ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→

`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p = ωn

p + ∆t ν
`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1,∗
ij

• Near-wall diff. : Compute the wall contribution (ωw)n+1
ij (see App. E.7 step B)

ωn+1
ij = ωn+1,∗

ij + (ωw)n+1
ij

(ωw)n+1
ij

M2P to x
n+1
p

−−−−−−−−−→ (ωw)n+1
p

ωn+1
p = ωn+1,∗

p + (ωw)n+1
p

Redistribution : after nr time steps, reinitialize the set of particles:

E.3. DRK2-SUB 253

E.3 DRK2-SUB

Decomposed RK2 scheme computing the wall contributions at the end of every

SUB step.

Predictor : from tn to tn+ 1
2

∆= tn + 1
2
∆t

• Advection : ωn
ij

solve Eq. (3.3)
−−−−−−−−−−→ un

ij

un
ij

M2P to x
n
p

−−−−−−−−→ un
p

x
n+ 1

2
p = xn

p +
∆t

2
un

p

• Diffusion : ωn
ij

∇
2(·)

−−−−→
`

∇
2ω

´n

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

∂Ω

= 0

`

∇
2ω

´n

ij

M2P to x
n
p

−−−−−−−−→
`

∇
2ω

´n

p

ω
n+ 1

2
,∗

p = ωn
p +

∆t

2
ν

`

∇
2ω

´n

p

ω
n+ 1

2
,∗

p
P2M from x

n+1
2

p
−−−−−−−−−−−−→ ω

n+ 1
2

,∗

ij

• Near-wall diff. : Compute the wall contribution (ωw)
n+ 1

2
ij (see App. E.7 step A)

ω
n+ 1

2
ij = ω

n+ 1
2

,∗

ij + (ωw)
n+ 1

2
ij

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
2

ij

u
n+ 1

2
ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→ u

n+ 1
2

p

xn+1
p = xn

p + ∆t u
n+ 1

2
p

• Diffusion : ω
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

∂Ω

= 0

`

∇
2ω

´n+ 1
2

ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→

`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p = ωn

p + ∆t ν
`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1,∗
ij

• Near-wall diff. : Compute the wall contribution (ωw)n+1
ij (see App. E.7 step B)

ωn+1
ij = ωn+1,∗

ij + (ωw)n+1
ij

(ωw)n+1
ij

M2P to x
n+1
p

−−−−−−−−−→ (ωw)n+1
p

ωn+1
p = ωn+1,∗

p + (ωw)n+1
p

Redistribution : after nr time steps, reinitialize the set of particles.

254 Appendix E. Time integration schemes for VPM methods

E.4 DRK2-CSUB

Decomposed RK2 scheme computing Convected wall contributions at the end

of every SUB step.

Predictor : from tn to tn+ 1
2

∆= tn + 1
2
∆t

• Advection : ωn
ij

solve Eq. (3.3)
−−−−−−−−−−→ un

ij

un
ij

M2P to x
n
p

−−−−−−−−→ un
p

x
n+ 1

2
p = xn

p +
∆t

2
un

p

• Diffusion : ωn
ij

∇
2(·)

−−−−→
`

∇
2ω

´n

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

∂Ω

= 0

`

∇
2ω

´n

ij

M2P to x
n
p

−−−−−−−−→
`

∇
2ω

´n

p

ω
n+ 1

2
,∗

p = ωn
p +

∆t

2
ν

`

∇
2ω

´n

p

ω
n+ 1

2
,∗

p
P2M from x

n+1
2

p
−−−−−−−−−−−−→ ω

n+ 1
2

,∗

ij

• Near-wall diff. : Compute the wall contribution (ωw)
n+ 1

2
ij (see App. E.7 step A)

(ωw)
n+ 1

2
ij

M2P to x
n
p

−−−−−−−−→ (ωw)
n+ 1

2
p

ω
n+ 1

2
p = ω

n+ 1
2

,∗
p + (ωw)

n+ 1
2

p

ω
n+ 1

2
p

P2M from x

n+ 1
2

p
−−−−−−−−−−−−→ ω

n+ 1
2

ij

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
2

ij

u
n+ 1

2
ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→ u

n+ 1
2

p

xn+1
p = xn

p + ∆t u
n+ 1

2
p

• Diffusion : ω
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

∂Ω

= 0

`

∇
2ω

´n+ 1
2

ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→

`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p = ωn

p + ∆t ν
`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1,∗
ij

• Near-wall diff. : Compute the wall contribution (ωw)n+1
ij (see App. E.7 step B)

(ωw)n+1
ij

M2P to x

n+1
2

p
−−−−−−−−−−→ (ωw)n+1

p

ωn+1
p = ωn+1,∗

p + (ωw)n+1
p

ωn+1
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1
ij

Redistribution : after nr time steps, reinitialize the set of particles.

E.5. SRK2 255

E.5 SRK2

Second order Split RK2 scheme.

Predictor : from tn to tn+ 1
2

∆= tn + 1
2
∆t

• Advection : ωn
ij

solve Eq. (3.3)
−−−−−−−−−−→ un

ij

un
ij

M2P to x
n
p

−−−−−−−−→ un
p

x
n+ 1

2
p = xn

p +
∆t

2
un

p

ω̃
n+ 1

2
p = ωn

p

ω̃
n+ 1

2
p

P2M from x

n+ 1
2

p
−−−−−−−−−−−−→ ω̃

n+ 1
2

ij

• Diffusion : ω̃
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω̃

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

∂Ω

= qn
ω

ω
n+ 1

2
ij = ω̃

n+ 1
2

ij +
∆t

2
ν

`

∇
2ω̃

´n+ 1
2

ij

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
2

ij

u
n+ 1

2
ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→ u

n+ 1
2

p

xn+1
p = xn

p + ∆t u
n+ 1

2
p

ω̃n+1
p = ωn

p

• Diffusion : ω
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

∂Ω

= q
n+ 1

2
ω

`

∇
2ω

´n+ 1
2

ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→

`

∇
2ω

´n+ 1
2

p

ωn+1
p = ω̃n+1

p + ∆t ν
`

∇
2ω

´n+ 1
2

p

ωn+1
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1
ij

Redistribution : after nr time steps, reinitialize the set of particles.

256 Appendix E. Time integration schemes for VPM methods

E.6 DSRK2-CSUB

Decomposed second order Split RK2 scheme computing Convected wall contri-

butions at the end of every SUB step.

Predictor : from tn to tn+ 1
2

∆= tn + 1
2
∆t

• Advection : ωn
ij

solve Eq. (3.3)
−−−−−−−−−−→ un

ij

un
ij

M2P to x
n
p

−−−−−−−−→ un
p

x
n+ 1

2
p = xn

p +
∆t

2
un

p

ω̃
n+ 1

2
p = ωn

p

ω̃
n+ 1

2
p

P2M from x

n+ 1
2

p
−−−−−−−−−−−−→ ω̃

n+ 1
2

ij

• Diffusion : ω̃
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω̃

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n

∂Ω

= 0

ω
n+ 1

2
,∗

ij = ω̃
n+ 1

2
ij +

∆t

2
ν

`

∇
2ω̃

´n+ 1
2

ij

• Near-wall diff. : Compute the wall contribution (ωw)
n+ 1

2
ij (see App. E.7 step A)

ω
n+ 1

2
ij = ω

n+ 1
2

,∗

ij + (ωw)
n+ 1

2
ij

Corrector : from tn to tn+1 ∆= tn + ∆t

• Advection : ω
n+ 1

2
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
2

ij

u
n+ 1

2
ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→ u

n+ 1
2

p

xn+1
p = xn

p + ∆t u
n+ 1

2
p

ω̃n+1
p = ωn

p

ω̃n+1
p

P2M from x
n+1
p

−−−−−−−−−−−→ ω̃n+1
ij

• Diffusion : ω
n+ 1

2
ij

∇
2(·)

−−−−→
`

∇
2ω

´n+ 1
2

ij
with −ν

∂ω

∂n

˛

˛

˛

˛

n+ 1
2

∂Ω

= q
n+ 1

2
ω

`

∇
2ω

´n+ 1
2

ij

M2P to x

n+ 1
2

p
−−−−−−−−−−→

`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p = ω̃n+1

p + ∆t ν
`

∇
2ω

´n+ 1
2

p

ωn+1,∗
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1,∗
ij

• Near-wall diff. : Compute the wall contribution (ωw)n+1
ij (see App. E.7 step B)

(ωw)n+1
ij

M2P to x

n+1
2

p
−−−−−−−−−−→ (ωw)n+1

p

ωn+1
p = ωn+1,∗

p + (ωw)n+1
p

ωn+1
p

P2M from x
n+1
p

−−−−−−−−−−−→ ωn+1
ij

Redistribution : after nr time steps, reinitialize the set of particles.

E.7. Computation of the wall contributions 257

E.7 Computation of the wall contributions

Prescribed flux :

A q̄n
ω =

1

∆t/2

Z t
n+1

2

tn
qω dt

PW(∆t/2)
−−−−−−−→ (ωw)

n+ 1
2

ij

B q̄
n+ 1

2
ω =

1

∆t

Z tn+1

tn

qω dt
PW(∆t)
−−−−−−→ (ωw)n+1

ij

No-slip enforcement :

A ω
n+ 1

2
,∗

ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+ 1
2

,∗

ij , ∆γn+ 1
2

,∗

q̄n
ω =

∆γn+ 1
2

,∗

∆t/2

PW(∆t/2)
−−−−−−−→ (ωw)

n+ 1
2

ij

B ωn+1,∗
ij

solve Eq. (3.3)
−−−−−−−−−−→ u

n+1,∗
ij , ∆γn+1,∗

q̄
n+ 1

2
ω =

∆γn+1,∗

∆t

PW(∆t)
−−−−−−→ (ωw)n+1

ij

E.8 Explicit integral formulas for the near-wall

diffusion (PW)

The following 2-D diffusion problem can be solved analytically in the half plane

y ≥ 0

∂ωw

∂t
= ν∇2ωw

ωw(x, y, 0) = 0

−ν
∂ωw

∂n
(x, 0, t) =





0 if |x| > b

2

q̄ω = cst if |x| ≤ b
2

,

which corresponds to a panel located on the x axis in the segment [− b
2 , b

2]

and diffusing a uniform and constant flux q̄ω into the flow. According to

Ploumhans & Winckelmans [102], we can write

∂ωw

∂t
(x, y, t) = q̄ω

1√
π

1√
4νt

exp

(−y2

4νt

)
[erfc(s)]

(x− b
2)/

√
4νt

(x+ b
2)/

√
4νt

.

Let us consider a particle with coordinates xp = (xp, yp) in the local reference

system of the panel. As a result of the near-wall diffusion occurring between

258 Appendix E. Time integration schemes for VPM methods

t = 0 and t = ∆T , this particle receives an increment of circulation defined by

∆Γp
∆=

∫ ∆T

0

dΓp

dt
dt =

∫ ∆T

0

∫ xp+ h
2

xp−h
2

∫ yp+ h
2

yp−h
2

∂ωw

∂t
dy dx dt

dΓp

dt
= q̄ω [erfc(s)]

(yp−hl
2)/

√
4νt

(yp+ h
2)/

√
4νt

· 1

2

√
4νt
(
[ierfc(s)]

(xp− b
2−h

2)/
√

4νt

(xp− b
2 + h

2)/
√

4νt
− [ierfc(s)]

(xp+ b
2−h

2)/
√

4νt

(xp+ b
2+ h

2)/
√

4νt

)
,

with hl/2 = yp if 0 ≤ yp ≤ h and hl/2 = h/2 otherwise. The time integral

must be computed numerically using a Gauss quadrature (3 or 4 points). If the

particles are not aligned with the local panel lattice, a least-square correction

can be applied in order to ensure conservation

∆Γp,conserv = ∆Γp +
(∆Γp)

2

∑
p(∆Γp)2

(
b q̄ω ∆T −

∑

p

∆Γp

)
.

The average vorticity associated to this increment of circulation is then simply

∆ωw
∆=

∆Γp

h2
.

The diffusion from the panel affects only a limited number of particles.

Typically, a check is performed so as to identify the particles that lie in the

domain of influence of the panel defined by a characteristic diffusion length,

i.e. a particle p belongs to this domain (and hence receives an increment of

circulation), if

|xp| . 5
√

4ν∆T .

Every particle has to account for all panels that include its position inside their

domain of influence.

Given a boundary flux q̄ω (or equivalently a set of panels m with a prescribed

flux (q̄ω)m), the application of this scheme in order to compute the grid field

(ωw)ij , associated to the near-wall diffusion from t = 0 to t = ∆T , is succinctly

referred to as

q̄ω
PW(∆T)−−−−−−→ (ωw)ij ,

where PW stands for Ploumhans & Winckelmans [102].

Appendix F

DDES of the flow past a

pair of cylinders in tandem

configuration

The content of this chapter is based on a proceedings paper [86]

written for the “AIAA BANC-I workshop” in June 2010 (Stock-

holm). It is entitled “DDES of the flow past a pair of cylinders in

tandem configuration”; the authors are Y. Marichal, C. Carton, L.

Bricteux, M. Duponcheel, G. Winckelmans and P. Geuzaine.

Abstract This paper concerns the unsteady turbulent flow simulation around

a pair of cylinders in tandem configuration at a high Reynolds number. The

study of this flow and its acoustics are relevant as it includes similar physical

phenomena as those related to landing gear noise. The flow simulation is here

performed using a parallel implicit compressible flow solver for unstructured

tetrahedral meshes developed at Cenaero. As turbulent model, the Delayed

Detached Eddy Simulation approach (DDES) of Spalart-Allmaras is used. In

order to capture the flow physics properly, a special care is devoted to the

spatial discretization, here using a kinetic-energy conserving central scheme in

the LES part of the DDES and an AUSM scheme in the RANS part. The

grid is set-up with multiple refinement zones to capture properly the free shear

layers emanating from the upstream cylinder, the wake interaction with the

downstream cylinder and the vortex shedding of the downstream cylinder. The

260 Appendix F. Tandem cylinders

Mach number of the flow corresponds to that of the experiments: M = 0.1285.

The Reynolds number based on the upstream velocity and the cylinder diameter

is set to Re = 1.66 × 105. The spanwise extent of the mesh is set to Lz =

4 D with D the cylinder diameter. A very refined case is also investigated,

then limited to Lz = D. Mean flow diagnostics and turbulence quantities are

provided and compared to available experimental data [82].

F.1 Introduction

During approach or landing, the noise generated by an aircraft is issued from

different sources. Among these sources, there are of course the engines but also

all the lift enhancing devices and the landing gears. The noise generated by

these later sources is called airframe noise. This airframe noise constitutes a

non negligible part of the total noise generated by a manoeuvering aircraft. In

this work, the focus lies on the landing gear. The source of noise results from

the turbulent flow over this bluff body. Various parts of a landing gear can be

modeled as closely spaced nearly cylindrical bodies. For this purpose, the study

of the flow over a pair of cylinders in tandem configuration is relevant. Several

experimental studies have already been performed on this flow. For instance,

aerodynamic data were gathered in the work of Khorrami et al. [68]. In the

work of Jenkins et al. [63], a PIV investigation was performed. A 2-D URANS

investigation was also performed by Doolan [42]. The originality of the present

work consists in using a DDES approach for the turbulence modeling and in

studying the influence of the cylinder spanwise length.

F.2 Numerical method

The simulation of the studied case was performed with a compressible parallel

hybrid finite volume - finite element solver developed at Cenaero [53]. The

convective fluxes are described by a finite volume formulation by means of a

second order energy conserving centered scheme designed to perform LES on

unstructured grids. The local use of upwind schemes, for example in strong

gradient regions, is also provided (e.g. AUSM, JST, Roe,...). The diffusive

terms are discretized using a classical P1 Galerkin formulation resulting in

a global second order spatial numerical scheme. The time discretization is

also second order and fully implicit (Three-point Backward Difference, 3BDF).

F.3. Problem description 261

In order to solve the system efficiently, a Newton-Krylov-Schwarz method is

used (the non linear system has to be solved at every time step by means of

a dual time stepping technique). As the Reynolds number of the flow is very

high, turbulence modeling is required. The Delayed Detached Eddy Simulation

(DDES) approach [117] has been used.

F.3 Problem description

F.3.1 Tandem cylinders

A sketch of the geometrical configuration of the pair of cylinders is illustrated

in Fig. F.1. The distance between the cylinders is set to L/D = 3.7. Two ge-

ometries have been studied, differing from each other in the spanwise extension

Lz of the periodic computational domain : Lz = 4 D and Lz = D. This is

to be compared with the geometry used for the two experimental campaigns

that have been caried out : The BART campaign (Basic aerodynamic research

tunnel test, see e.g. Lockard et al. [81], Neuhart et al. [94]) was made on a

configuration with an extension of Lz = 12.4 D, the QFF campaign (quiet flow

facility, see e.g. Lockard et al. [81]) was made on a configuration with an exten-

sion of Lz = 16 D. This justifies the use of a periodic computational domain,

as the influence of the side walls can be ommited for such an extension. The

extent of the bounding box corresponds to 105 D in the flow direction and to

70 D in the direction perpendicular to the flow. This aims at preventing any

border effects due to the finite size of the domain.

Figure F.1: Flow configuration

262 Appendix F. Tandem cylinders

F.3.2 Simulated conditions

The Reynolds and Mach numbers were taken as those of the experiment: Ma =

0.1285, Re = 1.66× 105. At this Reynolds number, the range of scales in the

flow is very large and this requires a strong turbulent model to take into account

the effect of the unresolved scales. In bluff body aerodynamics, a well suited

approach is DDES (Delayed Detached Eddy Simulation, see [117]) which allows

to treat the boundary layers with a RANS model. On the contrary, in the core

of the flow, the LES is a well performing approach where only the large scales

of physical interest are captured, meaning that more turbulent fluctuations

are captured. The efficiency of this approach lies in the fact that the RANS

method requires far less grid points in the streamwise and spanwise direction

in the boundary layers, compared to LES. The model is based on a specific

RANS formulation for the near-wall regions of the flow that behaves as a LES

model in the core of the flow. In our case, the Spalart-Allmaras model [116]

has been adopted (see e.g. Strelets et al. [119], Spalart et al. [117]). The use

of this turbulent model requires specific spatial descretization schemes : In the

LES zone an energy-conserving centered scheme is used and, in the RANS zone

near to the wall, an AUSM upwind scheme is required to ensure the stability

of the simulation. The AUSM scheme is also used at a certain distance of the

cylinders in order to smooth out the fluctuations due to the mesh coarsening.

Three cases have been studied with different spanwise lengths and mesh

refinement parameters. The principal mesh has a spatial extent Lz = 4 D and

has been designed to fit with the available computational resources (mesh M1).

In order to assess the dependence of the results on the spanwise extent of the

periodic computational domain, a second mesh with the same resolution was

build with Lz = D (mesh M2). A third mesh with Lz = D was also generated

with a very fine resolution (mesh M3) : it allows to show that the results are

essentially mesh independent. As there is a change in the spanwise extent of the

periodic domain between M1 and M2, the flow configuration is not identical.

However, only the modes with the largest wavelength are affected. We can

check if the small structures of the flow are captured properly by comparing

the results from M2 with those of the refined mesh M3. A comparison for the

large scales of the flow is less needed as those are less dependent of the grid

size but rather of the spanwise extent of the mesh.

As will be seen in Section F.3.3, the boundary layers are wall-resolved and

there is no need for any supplementary wall model. The free flow (external

F.3. Problem description 263

boundaries) is modeled by computing Riemann fluxes using the upstream flow

conditions and by taking into account the flow direction. The combination

between the important global size of the domain and the use of the upwind

AUSM scheme far from the cylinders avoids the need for an artificial buffer

layer. Indeed, it was observed that the present boundary condition imple-

mentation performed quite well in convecting turbulent structures outside the

domain and the acoustic reflection was negligible.

The time discretization uses a fully implicit integration that allows to choose

a time step independently of acoustic considerations. In order to capture prop-

erly the physics, the number defined by CFL = max‖~u‖∆t
∆x which behaves

roughly like the classical CFL number, should be of order unity (∆x is the

streamwise wall mesh size). This guarantees good convergence of the solver.

The current time values of ∆t∗ = ∆tU
D , CFL and the sampling parameters are

given in Table F.1 (U is the upstream velocity). The mean values have been

computed over N∆t time steps after having reached a statistically converged

regime, which corresponds to TtotU/D convective times and Ttotfs main shed-

ding periods. The statistical data have been computed by taking samples over

every time step.

Mesh ∆t∗ CFL N∆t TtotU/D Ttotfs fs fmin fmax

M1 7.69 · 10−3 0.74 17655 135.3 39.9 226 5.67 50k

M2 7.69 · 10−3 0.76 17143 131.5 41.8 244 5.83 50k

M3 3.84 · 10−3 0.86 34247 131.5 39.7 232 5.84 100k

Table F.1: Temporal parameters (frequencies are expressed in Hz).

F.3.3 Grid generation

The number of grid points and the characteristics of the three meshes are sum-

marized in Table F.2 and Table F.3. The last table provides mesh sizes of

the cells adjacent to the walls (for the upstream and downstream cylinders).

The surface mesh on the upstream cylinder is designed to be pseudo-structured

(cartesian mesh) in order to be aligned with the mean flow direction. It was

also chosen to handle the downstream cylinder in the same way. ∆x gives the

size of the cells in the flow direction, ∆y is the thickness of the first layer (per-

pendicular to the wall surface) and ∆z the mesh size in the spanwise direction.

264 Appendix F. Tandem cylinders

The quantity ∆y+
max = max uτ ∆y

ν indicates if the boundary layer velocity gra-

dient is well resolved (uτ =
√

τw/ρ is the friction velocity based on the wall

shear stress τw). It is approximately O(1) on both cylinders, as it should be for

wall-resolved computations. The mesh refinement procedure can be visualized

in the top part of Fig. F.2, displaying in the upper part the mesh corresponding

to M1 and M2 and in the lower part the finer mesh M3.

The thickness of the different boundary mesh layers follows a geometric

progression with a rate of 1.1 as the wall distance increases. As can be seen in

Fig. F.2, there are also refinement zones in the wake of the cylinders, but as

the mesh has an octree topology inside the volume, only grid size transitions

corresponding to a factor 2 are allowed. The most refined zone covers the

recirculation of the upstream cylinder in order to capture as many as possible

structures coming from the upstream cylinder as they directly influence the flow

configuration at the downstream cylinder. A first choice consisted in defining

two refinement patches covering only the detached shear layers from cylinder 1

but convergence considerations showed that the whole wake should be refined.

The physical reason for this is the recirculation phenomenon reinserting small

structures from the coarser zone into the more refined patch. In this case, the

grid transition factor is too high to capture the reinsertion properly.

Contrary to the volume mesh, the surface mesh on the external borders

of the domain is unstructured and isotropic. Therefore, transition regions are

provided to connect the core grid to the internal and external boundaries.

Mesh Npoints Ncells Ncpu Lz/D

M1 9.85 M 58.1 M 400 4

M2 2.67 M 15.2 M 64 1

M3 10.9 M 63.4 M 256 1

Table F.2: Mesh description : global quantities.

F.4 Results

The results obtained numerically in the present work are compared as much as

possible with the experimental data. A first insight into the flow configuration

for the case M1 (Lz = 4 D) is given in Fig.F.3, showing a snapshot of an iso-

value surface of the λ2 criterion. In Fig.F.4, another snapshot is represented,

F.4. Results 265

Mesh ∆x/D ∆y/D ∆z/D ∆y+
max

M1 up 1.75 · 10−2 1.75 · 10−4 1.75 · 10−2 2.39

down 2.62 · 10−2 3.50 · 10−4 3.50 · 10−2 4.64

M2 up 1.75 · 10−2 1.75 · 10−4 1.75 · 10−2 2.41

down 2.62 · 10−2 3.50 · 10−4 3.50 · 10−2 4.62

M3 up 7.70 · 10−3 1.50 · 10−4 1.05 · 10−2 2.01

down 1.31 · 10−2 2.10 · 10−4 1.75 · 10−2 2.68

Table F.3: Mesh description for cells adjacent to the wall : upstream cylinder (up),
downstream cylinder (down).

showing a spanwise cut of the z-component of the vorticity is shown for the

case M3. One can appreciate the complexity of the flow and the multi scales of

physical importance : very thin boundary layers, detached shear layers, large

coherent vortices, turbulent vortices, etc.

F.4.1 Pressure coefficients

The first quantitative diagnostics to be compared with the experiments are the

pressure coefficients displayed in Fig. F.5 and defined by:

Cp =
p∞ − p
1
2ρU2

. (F.1)

A good agreement is globally observed between the different results. For the

upstream cylinder, the peaks are slightly overestimated by the computations.

In the wake region, the BART experiment over-predicts the pressure coeffi-

cient. The other results are very close to each other. It however appears that

the predicted Cp in the wake region is not as high as it should be which has

266 Appendix F. Tandem cylinders

Figure F.2: Top : Illustration of the different refinement zones for mesh M3; bottom
: Zoom on the region close to the cylinders. Comparison between mesh M2 (top) and
mesh M3 (bottom).

a tremendous impact on the drag coefficient as will be seen later. For the

downstream cylinder, the agreement is quite good between all the curves. It

is however worth to note that the BART experiment exhibits also a behaviour

that is different from that of the other results, mainly in the stagnation region.

The RMS value of the surface pressure fluctuation is defined as:

CRMS
p =

√
p′2

1
2ρU2

(F.2)

with p′2 the time average of the squared pressure fluctuations. This diagnostic

is plotted in Fig. F.6.

One can observe, that for both cylinders, the shape of the curves is very

similar. When Lz = D, the amplitude of the fluctuations is similar to that

of the experiments. However it should not be the case as all the turbulent

scales of the experiment cannot be captured. This similarity in amplitude

happens therefore by chance as it is based on a different physical phenomenon.

Indeed the flow topology is closer to what happens with a 2-D case where the

amplitude of the shedding is maximal. For the two cases with Lz = D, the more

refined mesh (M3) leads to more important pressure unsteady fluctuations as

it captures more small scales. The case with Lz = 4D leads to the lower

fluctuations : this is due to the fact that the energy of the turbulent fluctuations

are also distributed along the z direction. The 2-D effect is thus less stringent

and the z averaged pressure fluctuations have a lower value. The downstream

cylinder numerical results do not depart much from each other near θ = 0o

F.4. Results 267

Figure F.3: Velocity norm plot on λ2 = −10 iso-value surface (case M1).

268 Appendix F. Tandem cylinders

Figure F.4: Snapshot of the vorticity ωz D
U

(with saturation of the color scale) in one
plane perpendicular to z axis; case M3 (left), case M1 (right).

F.4. Results 269

0 45 90 135 180 225 270 315 360
−1

−0.5

0

0.5

1

1.5

2

Cp

θ

0 45 90 135 180 225 270 315 360
−1

−0.5

0

0.5

1

1.5

2

Cp

θ

Figure F.5: Top : Pressure coefficient azimuthal distribution on the upstream cylin-
der. BART experiment (dash-dot thin); QFF experiment (dash thin); case M1 (solid-
thick); case M2 (dash-dot thick); case M3 (dash thick). Bottom : Pressure coefficient
azimuthal distribution on the downstream cylinder. BART experiment (dash-dot thin);
QFF experiment (dash thin); case M1 (solid thick); case M2 (dash-dot thick); case
M3 (dash thick).

because, there, the fluctuations mostly come from the upstream wake. On

the contrary, behind the downstream cylinder, the 2-D effects play again an

important role for the two cases with Lz = D and the fluctuations are globally

higher than those for Lz = 4 D.

F.4.2 Velocity profiles

The streamwise velocity profiles are reported in Fig. F.7 for the region between

the two cylinders (upper part). The amplitude of the velocity found in the

case with Lz = 4 D is close to that of the experiment. However, the location

of the peaks is quite different. This reflects a different size in the recircula-

tion zone lying in the gap region, probably due to a separation point location

270 Appendix F. Tandem cylinders

0 45 90 135 180 225 270 315 360
0

0.05

0.1

CRMS
p

θ

0 45 90 135 180 225 270 315 360
0

0.1

0.2

0.3

0.4

0.5

0.6

CRMS
p

θ

Figure F.6: Top : RMS of the pressure coefficient azimuthal distribution on the
upstream cylinder. BART experiment (dash-dot thin); QFF experiment (dash thin);
case M1 (solid thick); case M2 (dash-dot thick); case M3 (dash thick). Bottom : RMS
of the pressure coefficient azimuthal distribution on the downstream cylinder. BART
experiment (dash-dot thin); QFF experiment (dash thin); case M1 (solid thick); case
M2 (dash-dot thick); case M3 (dash thick).

that differs from the experimental one. Nevertheless, the results for Lz = D

seem to have reached convergence. The velocity minimum is well captured in

amplitude and position and so is the stagnation point. However, the velocity

maximum peak location and amplitude does not follow the experiment. This

repeatedly shows that the spanwise confinement is not negligible and, as a con-

sequence, the good agreement between experience and computation concerning

the stagnation point location comes about by chance. With this spanwise di-

mension, it can not capture properly the 3-D effects in the wake. Indeed, the

confinement implies a larger velocity maximum as the spanwise dimension is

not large enough to redistribute the kinetic energy, see also the 2-D URANS

results from Doolan et al. [42]. This is enforced by the fact that, for Lz = 4 D,

even if the peak location is not correct, its amplitude is in good agreement

F.4. Results 271

with the experiment showing that the flow topology is more likely driven by

3-D turbulent effects. In the region after the downstream cylinder (lower part

of Fig. F.7), it can be observed that the case with Lz = 4D is closer to the

experiment than the cases with Lz = D. In this case, we think that using an

even longer spanwise cylinder length should further improve the results.

0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ux/U

x/D

4 4.5 5 5.5 6

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ux/U

x/D

Figure F.7: Top : Velocity profile in the gap between cylinders and along y/D = 0.
BART experiment (solid-thin); case M1 (solid thick); case M2 (dash-dot thick); case
M3 (dash thick). Bottom : Velocity profile after downstream cylinder and along
y/D = 0. BART experiment (solid-thin); case M1 (solid thick); case M2 (dash-dot
thick); case M3 (dash thick).

F.4.3 Turbulent kinetic energy profiles

The 2-D turbulent kinetic energy is defined as:

TKE2D =
1

2

(
u′

xu′
x + u′

yu
′
y

)
, (F.3)

272 Appendix F. Tandem cylinders

with u′
xu′

x and u′
yu

′
y the time average of the squared velocity fluctuations re-

spectively in the streamwise direction and in the direction perpendicular to the

flow. This diagnostic is given along y/D = 0 in the upper part of Fig. F.8. The

turbulent kinetic energy has similar properties as those of the pressure fluc-

tuations. Indeed the numerical results show that the two cases with Lz = D

(M2 and M3) capture well the amplitude of the peak between the cylinders

despite a slightly higher amplitude for the refined case M3. This, in turn,

can be explained with similar arguments as those developed for the pressure

fluctuations. The case M1 predicts a peak position which is in phase with the

experiment. The amplitude is lower because it cannot capture all scales from

the experiment. The amplitude is also lower compared with the two other cases

as the spanwise confinement is more pronounced there. One can observe that

the turbulent kinetic energy computed behind the second cylinder for the case

M1 is the only one of the three cases to provide the correct tendency even if the

predicted peak lies slightly behind the experiment. A comparison can be made

with the streamwise velocity profile behind the downstream cylinder (lower

part of Fig. F.7). Indeed there seems to be a link between the recirculation

zone length and the position of the TKE2D peak.

F.4.4 Temporal evolution of the lift and drag coefficients

The lift and drag coefficients are defined by

CL =
FL

1
2ρ U2 Lz D

, CD =
FD

1
2ρ U2 Lz D

. (F.4)

Their time evolution for the case with Lz = 4D (M1) is reported in Fig. F.9 for

the upstream cylinder and in Fig. F.10 for the downstream cylinder. These plots

allows to check that the transient effects are well eliminated after 50 time units

(defined by D/U). In the present work (case M1), the averaging process was

carried for a time span of 135 convective times, starting at 150D
U , which should

be enough for statistics accumulation. The obtained time averaged values are

CD = 0.33 for the upstream cylinder and CD = 0.35 for the downstream

cylinder. This is indeed strange as one would expect the drag coefficient of

the downstream cylinder to be lower than that of the upstream one. The

experimental data of Jenkins et al. [63] provides CD = 0.49 − 0.52 for the

upstream cylinder and CD = 0.24 − 0.35 for the downstream cylinder. The

drag is still in the range of the experiments for the second cylinder while it

F.4. Results 273

0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

TKE2D

U2

x/D

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

TKE2D

U2

x/D

Figure F.8: Top : 2-D turbulent kinetic energy profile (TKE) in the gap between
cylinders and along y/D = 0. BART experiment (solid-thin); case M1 (solid thick);
case M2 (dash-dot thick); case M3 (dash thick). Bottom : 2-D turbulent kinetic en-
ergy profile (TKE) after downstream cylinder and along y/D = 0. BART experiment
(solid-thin); case M1 (solid thick); case M2 (dash-dot thick); case M3 (dash thick).

is under predicted for the upstream cylinder. This is mainly due to the wake

pressure behind the upstream cylinder which is not as low as in the experiment.

This is closely linked to the separation point location, as will be seen in the

next section.

F.4.5 Friction coefficient

The friction coefficient is defined as:

Cf =
τw

1
2ρU2

. (F.5)

The results are presented in Fig. F.11. As experimental results are not available,

only numerical results are shown. The three cases are really close to each other

274 Appendix F. Tandem cylinders

0 50 100 150 200 250 300

−0.2

−0.1

0

0.1

0.2

0.3

CL

t U
D

0 50 100 150 200 250 300
0.3

0.35

0.4

0.45

0.5

CD

t U
D

Figure F.9: Top : Temporal evolution of the lift coefficient CL for the upstream
cylinder. Bottom : Temporal evolution of the drag coefficient CD for the upstream
cylinder.

meaning that this diagnostic is quite independent of the spanwise dimension.

By taking a closer look at the separation point on the upstream cylinder, defined

as the root of the friction coefficient near θ = 105o and θ = 255o, one can see

that there is only a slight difference in its location for the three cases. Results

are given in Table F.4. Independently of the spanwise dimension, the turbulent

model predicts a separation location which is nearly the same for the three

cases. This makes sense as the boundary layer is mostly homogenous in the

spanwise direction and thus approximately two-dimensional.

It should also be observed that the friction coefficient is one order of mag-

nitude lower than the pressure coefficient which means that its contribution

to the drag is only minor, as expected for a bluff body flow. However, the

separation point location directly influences the wake pressure. As can be seen

in Fig. F.5, the region behind the separation point is quasi isobar. Therefore,

the wake pressure is directly defined by the pressure at the separation point.

F.4. Results 275

0 50 100 150 200 250 300

−2

−1

0

1

2

CL

t U
D

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

CD

t U
D

Figure F.10: Top : Temporal evolution of the lift coefficient CL for the downstream
cylinder. Bottom :Temporal evolution of the drag coefficient CD for the downstream
cylinder.

A more upstream location of the experimental separation point can be seen

in the upper part of Fig. F.11. Different reasons can be invoked for this pres-

sure difference: The turbulent model and the experimental tripping device.

The turbulent model uses a tripping term which triggers a turbulent boundary

layer. This relies on the assumption that the boundary layer is fully turbu-

lent. On the contrary, the tripping device induces a turbulent transition of the

boundary layer. The resulting transition length is probably not negligible and

the boundary layer is probably not fully turbulent thus resulting in a earlier

separation.

The mesh transition between the boundary layer mesh and the volume mesh

can also influence the behavior of the turbulent model. Such a big difference

between prediction and experiment shows that the flow is very sensitive to the

boundary layer modeling since a slight modification of the input parameters

has a large impact on the separation location and thus on global flow topology.

276 Appendix F. Tandem cylinders

As a consequence, much care has to be taken while designing the mesh near

the wall and choosing an appropriate turbulence model.

Mesh θ [o]

M1 103.5

M2 104.9

M3 103.9

Table F.4: Location of the main separation point on the upstream cylinder.

F.4.6 Power spectral density

For the case M1, the power spectral density is taken from the wall pressure time

signal at two different locations, the first at 135o on the upstream cylinder and

the second at 45o on the downstream cylinder (see Fig. F.12). The main peak

position of the upstream cylinder defines the shedding frequency. The compu-

tations predict a shedding frequency of 226 Hz whereas, for the experiment,

the resulting shedding frequency has a value of 178 Hz. This over-prediction

is probably due to the over-prediction of the recirculation zone length that

directly influences the shedding dynamics.

F.4.7 Mean flow streamlines

Fig. F.13 gives a comparison between the streamline configuration associated

with each of the three cases. The two cases with Lz = D (M2 and M3) have

a similar flow topology except from the near wake of the upstream cylinder.

Nevertheless, the lengths of the recirculation zone agree quite well. On the

contrary, the case M1 (Lz = 4 D) has a longer upstream recirculation zone and

a shorter downstream recirculation zone. Indeed, if one remembers Fig. F.7,

the upstream recirculation zone length is over-predicted for the case M1. This

tendency can be related to the separation point position given in Table F.4. As

the separation location is nearly the same for the three cases, only the spanwise

dimension can be the determinant factor. For Lz = D, the 2-D effects imply a

shorter recirculation bubble. It is also important to observe that the refinement

implies a slightly shorter recirculation zone. It thus contributes to the correct

tendency, as expected. For the same separation location, the 3-D effects force

the case M1 to provide a larger recirculation zone. In brief, the combination of a

F.4. Results 277

0 100 200 300
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Cf

θ

0 100 200 300
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Cf

θ

Figure F.11: Top : Friction coefficient for the upstream cylinder. Case M1 (solid-
thick); case M2 (dash-dot thick); case M3 (dash thick). Bottom :Friction coefficient
for the downstream cylinder. Case M1 (solid-thick); case M2 (dash-dot thick); case
M3 (dash thick).

more refined mesh and a better capture of the separation point (more upstream

location) would probably result in a shorter, and correct, recirculation length.

F.4.8 Mean flow vorticity and turbulent viscosity

The averaged spanwise component of the vorticity at the upstream cylinder

is given in Fig. F.14 along with a comparison between the three cases. The

represented colormap is saturated in order to allow better visualization of the

separating shear layers. On the left hand side, the global aspect shows that

the topology of the flow is slightly different if one compares the two cases with

Lz = D (M2 and M3) with the case with Lz = 4 D (M1). In the cases M2 and

M3, the shear layers are slightly pointing downward, whereas the shear layers

for the case M1 are nearly horizontal. Hence the recirculation region is longer

278 Appendix F. Tandem cylinders

10
2

10
3

60

80

100

120

140

PSD [dB Hz−1]

f [Hz]

10
2

10
3

60

80

100

120

140

PSD [dB Hz−1]

f [Hz]

Figure F.12: Top : Power spectral density of the surface pressure fluctuations taken
at 135o on the upstream cylinder. Bottom : Power spectral density of the surface
pressure fluctuations taken at 45o on the downstream cylinder.

for M1 than for M2 and M3. This again comes from the confinement effect.

There is also a slight difference in the thickness of the shear layer between

M2 and M3 which can be observed on the right hand side of the Fig. F.14

(close-up on the upper shear layer of the upstream cylinder). As expected, the

coarser the mesh is, the more the shear layer is diffused. Meanwhile, one could

argue that this shear layer is still to thick, as no Kelvin-Helmhlotz instabilities

are observed, even in the refined case M3, see Fig. F.4. Again, this is closely

linked to the nature of the boundary layer. If it is fully turbulent at separation,

the mean shear layer is too short and too thick to allow K-H instabilities (the

most instable wavelength can be shown to be proportional to the thickness).

However, if it is in a laminar or transitional state, the thickness will be reduced

and K-H instabilities could more likely occur. In addition, as the shear stress

is quite important in the shear layer, the turbulent viscosity production term

F.5. Computational resources 279

Figure F.13: Mean flow Streamlines. The estimated stagnation point locations are
indicated by a bullet. Top : case M1; Center : case M2; Bottom : case M3

in the Spalart-Allmaras model [116] overwhelms the destruction term and local

turbulence equilibrium is no more verified. The model behaviour lies between

a RANS model and a LES approach. This also contributes to the thickening of

the shear layer, see also Fig. F.15 for the turbulent viscosity near the separation.

It is smaller for the refined case M3, as expected.

F.5 Computational resources

The computations were run on the Cenaero Ernest cluster. Each 8-slot nodes

contains two quad-core Intel Xeon processors offering nearly 2 GB per core.

The cores are connected with an Infiniband interconnect bringing the peak

280 Appendix F. Tandem cylinders

Figure F.14: Time and spanwise averaged spanwise vorticity component for case
M1 (top), M2 (middle), M3 (bottom) and zoomed view (right column).

capacity of Cenaero cluster to 17 TFlops. The CPU times as well as the memory

requirements are given in Table F.5. T WC
∆t is the wall clock time needed to

perform a simulation of one time step, T WC
1 s is the wall clock time needed to

perform a simulation of 1 s of physical time. maxMem is the maximal node

memory load percentage (with 15.7 GB per node).

Mesh T WC
∆t [s] T WC

1 s [days] max Mem[%]

M1 38.9 45 48

M2 69.2 80 50

M3 75.2 174 52

Table F.5: Computational ressources.

F.6 Conclusions

The DDES of the turbulent flow past a pair of cylinders in tandem configuration

and at high Reynolds number (1.66 × 105) has been performed. Three cases

F.6. Conclusions 281

Figure F.15: Normalized turbulent viscosity νt

ν
for case M1 (top), M2 (middle),

M3 (bottom).

282 Appendix F. Tandem cylinders

were simulated to investigate the effect of the spanwise periodic length and the

grid resolution. The most realistic case is indeed that with Lz = 4 D which is

closer to the reference experiments. The two cases with Lz = D are closer to

a 2-D case and were run to study the influence of the grid refinement and of

the confinement. Several quantitative diagnostics were provided and compared

with the experiments. The agreement between the results and the reference

experiment is quite fair. The averaged profiles are consistent with those of the

experiment. However, the size of the recirculation zones are not the same as in

the experiment. Moreover, the condition of the simulation and the experiment

are not the same: the turbulence model induce a tripping on a boundary layer

which is seen as fully turbulent (as in this zone it is a RANS behaviour) from the

stagnation point while, in reality, this boundary layer experience a transition

only after the location of the tripping device. This can explain why the location

of the separation point of the upstream cylinder is further downstream of that

of the experiment. This results in a too long recirculation region and in a too

high back pressure (hence also a too drag coefficient).

Choosing a longer spanwise length for the cylinders should further improve

the results. For instance, with Lz = 8 D one comes close to the length of the

experimental setup (Lz ≥ 12 D) without having the important influence of the

wind tunnel walls.

	Introduction
	Coupling a VPM method with a near-wall FV solver
	Vortex-particle mesh solver
	Finite volume solver
	Hybrid FV-VPM solver
	Results
	Conclusion

	No-slip condition and dipole in a box
	Description of the test case
	VPM solver with a no-through flow condition at the wall
	Computation of the velocity
	Diffusion and particle-mesh interpolation
	Time convergence study

	Enforcing a no-slip condition at the wall
	Study of the splitting effect for a prescribed flux
	Computation of the vorticity flux

	Results for the dipole flow in a box at Re=1000

	Unbounded immersed interface Poisson solver for VPM
	Introduction
	Problem statement
	Methodology
	Immersed interface approach for the interior boundary
	James-Lackner algorithm for the outer boundary
	Algorithm
	Possible extension to 3-D problems

	Numerical results
	Potential flow with circulation past a cylinder
	Added mass for an elliptical cylinder without circulation
	Potential flow with circulation past an airfoil
	Potential flow past multiple bodies

	Conclusion

	Immersed interface parabolic solver for VPM
	One-dimensional case
	Two-dimensional case
	Compatible extrapolation scheme
	Stability analysis
	Grid convergence study

	Particle-grid interpolation with a wall
	Mesh-to-particles interpolation (M2P)
	One-dimensional case
	Two-dimensional case
	Grid convergence study

	Particle-to-mesh interpolation (P2M)
	Wall data extension approach
	Alternative approach

	Immersed interface VPM
	Time stepping algorithm
	Initialization
	Poisson solver
	Near-wall diffusion
	Particle-mesh interpolation

	Results
	Impulsively started cylinder
	Flow past an impulsively started NACA0021 airfoil
	Flow past a cylinder at Re=100

	Accounting for an outflow condition
	Conclusions

	Disp. and diss. errors due to redistribution in 1-D
	Derivation of the numerical dissipation and dispersion errors
	Results
	Averaged numerical errors
	Recursive application of the redistribution
	Conclusion

	Conclusions
	Achievements
	Perspectives

	Bibliography
	One-sided stencils
	Additional immersed interface tools
	Computation of the velocity field
	Wall data for mesh-particle interpolation

	Fourier transforms
	Definitions of the Fourier transforms
	Some redistribution kernels with their Fourier transforms

	Vorticity flux associated to a no-slip condition
	Time integration schemes for VPM methods
	RK3
	DRK2-END
	DRK2-SUB
	DRK2-CSUB
	SRK2
	DSRK2-CSUB
	Computation of the wall contributions
	Explicit integral formulas for the near-wall diffusion (PW)

	Tandem cylinders
	Introduction
	Numerical method
	Problem description
	Tandem cylinders
	Simulated conditions
	Grid generation

	Results
	Pressure coefficients
	Velocity profiles
	Turbulent kinetic energy profiles
	Temporal evolution of the lift and drag coefficients
	Friction coefficient
	Power spectral density
	Mean flow streamlines
	Mean flow vorticity and turbulent viscosity

	Computational resources
	Conclusions

